Erratum 2: Uhlenbeck Compactness

Katrin Wehrheim

April 4, 2009

Thanks to Tim Nguyen some essential mistakes are identified and corrected.

The proof of Theorem 2.3' in case k = 1 relied on Theorem 4.3, whose proof had a gap, requiring the estimate in Theorem 2.3" below. This then also allows to prove Theorem 2.3' directly.

Theorem 2.3' For every $k \in \mathbb{N}$ and 1 there exists a constant <math>C such that the following holds: Suppose that $u \in \mathcal{D}(M)$ is a weak solution of the Neumann problem (wNP) for $f \in W^{-k,p}(M)$. Then $u \in W^{-k+2,p}(M)$ and

$$||u||_{W^{-k+2,p}} \le C(||f||_{W^{-k,p}} + |\langle u, 1 \rangle|).$$

Theorem 2.3" For every 1 there exists a constant C such that

 $\|\psi\|_{W^{1,p}} \le C\big(\|\Delta\psi\|_{W^{-1,p}} + |\langle\psi, 1\rangle|\big) \qquad \forall\psi \in \mathcal{C}^{\infty}_{\nu}(M).$

Proof: Using Lemma E.3, the injectivity of the map $\psi \mapsto (\Delta \psi, \langle \psi, 1 \rangle)$, and the compactness of the Sobolev embedding $W^{1,p}(M) \hookrightarrow L^p(M)$, it suffices to prove

$$\|\psi\|_{W^{1,p}} \le C(\|\Delta\psi\|_{W^{-1,p}} + \|\psi\|_{L^p}) \qquad \forall \psi \in \mathcal{C}^{\infty}_{\nu}(M)$$

From Theorem 2.3 we have

$$\|\psi\|_{W^{2,p}} \le C\left(\|\Delta\psi\|_{L^p} + \|\psi\|_{W^{1,p}}\right) \qquad \forall \psi \in \mathcal{C}^{\infty}_{\nu}(M).$$

The dual of this estimate is (as shown in the proof of Theorem 2.3' below)

$$\|\psi\|_{L^p} \le C(\|\Delta_{(wNP)}\psi\|_{W^{-2,p^*}} + \|\psi\|_{W^{-1,p^*}}) \qquad \forall \psi \in \mathcal{C}^{\infty}_{\nu}(M),$$

where $\Delta_{(wNP)}$ is the operator weakly defined by (wNP). One can interpolate these, as in [S, Thm. 3.1] for a bounded domain $M \subset \mathbb{R}^n$ (with $A = \Delta$, $V = V' = \mathcal{C}^{\infty}_{\nu}(M)$, and N = N' the constant functions) to prove the claimed estimate. Note here that Schechters norm

$$|u|_{-1,p} = \operatorname{lub}_{v \in \mathcal{C}^{\infty}_{\nu}(M)} ||v||_{W^{1,p^*}}^{-1} |\langle u, v \rangle|$$

is equivalent to $||u||_{W^{-1,p}}$ since $\mathcal{C}^{\infty}_{\nu}(M) \subset W^{1,p^*}(M)$ is dense.

More in the spirit of this book, one can deduce the claimed $W^{1,p}$ -estimates from the L^p -estimates in Theorem 2.3' for the Neumann problem and Theorem D.2' for the Dirichlet problem, applied to tangential resp. normal derivatives of ψ . That is, for any vector field $X \in \Gamma(TM)$ and $\phi \in \mathcal{C}^{\infty}(M)$ we calculate using Lemma 5.6

$$\begin{aligned} &-\int_{M} \mathcal{L}_{X}\psi \cdot \Delta\phi \\ &= \int_{M} \psi \cdot \mathcal{L}_{X}\Delta\phi + \int_{M} \operatorname{div} X \cdot \psi \cdot \Delta\phi - \int_{\partial M} g(X,\nu) \cdot \psi \cdot \Delta\phi \\ &= \int_{M} \psi \cdot \Delta\mathcal{L}_{X}\phi + \int_{M} \psi ([\mathcal{L}_{X},\Delta]\phi + \operatorname{div} X\Delta\phi) - \int_{\partial M} g(X,\nu) \cdot \psi \cdot \Delta\phi \\ &= \int_{M} \Delta\psi \cdot \mathcal{L}_{X}\phi + \int_{M} \psi ([\mathcal{L}_{X},\Delta]\phi + \operatorname{div} X\Delta\phi) - \int_{\partial M} \psi (g(X,\nu)\Delta\phi + \frac{\partial}{\partial\nu}(\mathcal{L}_{X}\phi)). \end{aligned}$$

If $X \in \Gamma(TM)$ is tangential to ∂M and such that $[X, \nu] = 0$, then the boundary term vanishes for all $\phi \in \mathcal{C}^{\infty}_{\nu}(M)$, showing that

$$\begin{aligned} \left| \int_{M} \mathcal{L}_{X} \psi \cdot \Delta \phi \right| &\leq \| \Delta \psi \|_{W^{-1,p}} \| \mathcal{L}_{X} \phi \|_{W^{1,p^{*}}} + \| \psi \|_{L^{p}} C'_{X} \| \phi \|_{W^{2,p^{*}}} \\ &\leq C_{X} \left(\| \Delta \psi \|_{W^{-1,p}} + \| \psi \|_{L^{p}} \right) \| \phi \|_{W^{2,p^{*}}} \end{aligned}$$

for some constants C'_X , C_X depending on X. Now the case k = 2 of Theorem 2.3' provides

$$\|\mathcal{L}_X\psi\|_{L^p} \le C\big(\|\Delta_{(wNP)}\mathcal{L}_X\psi\|_{W^{-2,p^*}} + |\langle \mathcal{L}_X\psi, 1\rangle| \le C'\big(\|\Delta\psi\|_{W^{-1,p}} + \|\psi\|_{L^p}\big),$$

where we estimated $|\langle \mathcal{L}_X \psi, 1 \rangle| = |\int_M \operatorname{div} X \cdot \psi|$ by $||\psi||_{L^p}$.

In order to prove the Theorem it now remains to consider a vector field $X = \tilde{\nu}$ that restricts to the unit normal $\tilde{\nu}|_{\partial M} = \nu$ on the boundary. Then the boundary term in the above partial integration is $\int_{\partial M} \psi \left(\Delta \phi + \frac{\partial}{\partial \nu} (\mathcal{L}_{\tilde{\nu}} \phi) \right)$. We claim that this term is of first order in ϕ for all $\phi \in C_{\delta}^{\infty}(M)$, i.e. with $\phi|_{\partial M} = 0$. Indeed, if we pick local coordinates near ∂M with $\partial_0 = \tilde{\nu}$ and $(\partial_j)_{j\geq 1}$ parallel to ∂M , then we can see that in highest order $-\Delta \phi = \partial_0^2 \phi + \sum_{j\geq 1} \partial_j^2 \phi = \partial_0^2 \phi = \frac{\partial}{\partial \nu} (\mathcal{L}_{\tilde{\nu}} \phi)$ since all tangential derivatives of ϕ vanish. Hence we can express this boundary term as the restriction $\Phi|_{\partial M} = \Delta \phi + \frac{\partial}{\partial \nu} (\mathcal{L}_{\tilde{\nu}} \phi)$ of a function $\Phi \in \mathcal{C}^{\infty}(M)$ given by first derivatives of ϕ near ∂M , multiplied with a cutoff function. Given any $\varepsilon > 0$ we can choose this cutoff function such that $\|\Phi\|_{L^{p^*}} \leq \varepsilon \|\phi\|_{W^{2,p^*}}$ and $\|\Phi\|_{W^{1,p^*}} \leq C_{\varepsilon} \|\phi\|_{W^{2,p^*}}$ with a constant C_{ε} depending on $\varepsilon > 0$. (To achieve this we multiply a given extension Φ by a cutoff function ζ and use the estimate $\|\zeta \Phi\|_{L^{p^*}} \leq C \|\zeta\|_{L^q} \|\Phi\|_{W^{1,p^*}}$, which follows from Hölder and Sobolev estimates with q = n for $p^* < n$, any q > n for $p^* = n$, and $q = p^*$ for $p^* < n$.) With that we obtain

$$\left| \int_{\partial M} \psi \left(\Delta \phi + \frac{\partial}{\partial \nu} (\mathcal{L}_{\tilde{\nu}} \phi) \right) \right| = \left| \int_{M} d^{*} \left(\psi \cdot \Phi \cdot g(\tilde{\nu}, \cdot) \right) \right|$$

$$\leq C_{\tilde{\nu}} \left(\|\psi\|_{L^{p}} \|\Phi\|_{W^{1,p^{*}}} + \|\psi\|_{W^{1,p}} \|\Phi\|_{L^{p^{*}}} \right)$$

$$\leq \left(\varepsilon \|\psi\|_{W^{1,p}} + C_{\varepsilon}' \|\psi\|_{L^{p}} \right) \|\phi\|_{W^{2,p^{*}}}$$

and hence for all $\phi \in \mathcal{C}^{\infty}_{\delta}(M)$

$$\left|\int_{M} \mathcal{L}_{\tilde{\nu}} \psi \cdot \Delta \phi\right| \leq \left(C_{\tilde{\nu}} \|\Delta \psi\|_{W^{-1,p}} + C_{\varepsilon}' \|\psi\|_{L^{p}} + \varepsilon \|\psi\|_{W^{1,p}}\right) \|\phi\|_{W^{2,p^{*}}}.$$

Now the estimate for the Dirichlet problem in case k = 2 of Theorem D.2' directly implies

$$\|\mathcal{L}_{\tilde{\nu}}\psi\|_{L^p} \leq C\big(C_{\tilde{\nu}}\|\Delta\psi\|_{W^{-1,p}} + C_{\varepsilon}'\|\psi\|_{L^p} + \varepsilon\|\psi\|_{W^{1,p}}\big).$$

Finally, we pick a generating set of tangential vector fields X_j and sum over all estimates for $\mathcal{L}_{X_j}\psi$ and $\mathcal{L}_{\tilde{\nu}}\psi$ to obtain

$$\begin{aligned} \|\psi\|_{W^{1,p}} &\leq C \big(\|\psi\|_{L^{p}} + \|\mathcal{L}_{\tilde{\nu}}\psi\|_{L^{p}} + \sum_{j} \|\mathcal{L}_{X_{j}}\psi\|_{L^{p}} \big) \\ &\leq C(\varepsilon) \big(\|\Delta\psi\|_{W^{-1,p}} + \|\psi\|_{L^{p}} \big) + \varepsilon \|\psi\|_{W^{1,p}} \end{aligned}$$

with some constant $C(\varepsilon)$ depending on a free choice of $\varepsilon > 0$. Now picking $\varepsilon = \frac{1}{2}$ and rearranging the inequality proves the theorem.

Proof of Theorem 2.3':

In case $k \geq 2$ this theorem follows directly from Theorems 2.2 and 2.3 by duality: Every $\phi \in \mathcal{C}^{\infty}(M)$ can be written as $\phi = \Delta \psi + c_{\phi}$, where $c_{\phi} = (\operatorname{Vol} M)^{-1} \int_{M} \phi$ and $\psi \in \mathcal{C}^{\infty}_{\nu}(M)$ such that $\|\psi\|_{W^{k,p^*}} \leq C' \|\phi - c_{\phi}\|_{W^{k-2,p^*}}$ for some constant C'. In case k = 1 this follows from Theorems 1.5 and 2.3". Now let $c := (\operatorname{Vol} M)^{-1} \langle u, 1 \rangle$, then we obtain

$$\begin{aligned} |\langle u - c, \phi \rangle| &= |\langle u - c, \phi - c_{\phi} \rangle| = |\langle u, \Delta \psi \rangle - c \int_{M} \Delta \psi| = |\langle f, \psi \rangle| \\ &\leq \|f\|_{W^{-k,p}} \|\psi\|_{W^{k,p^{*}}} \leq C' \|f\|_{W^{-k,p}} (\|\phi\|_{W^{k-2,p^{*}}} + |\int_{M} \phi|) \\ &\leq C \|f\|_{W^{-k,p}} \|\phi\|_{W^{k-2,p^{*}}}. \end{aligned}$$

Here the new constant C arises from $\left|\int_{M}\phi\right| = |\langle\phi,1\rangle| \le \|\phi\|_{W^{k-2,p^*}}\|1\|_{W^{2-k,p}}$. Since the above estimate holds for all $\phi \in \mathcal{C}^{\infty}(M)$, it proves that u-c and hence also u lie in $\left(W^{k-2,p^*}(M)\right)^* = W^{-k+2,p}(M)$ with

$$\begin{aligned} \|u\|_{W^{2-k,p}} &\leq \|u-c\|_{W^{2-k,p}} + \|c\|_{W^{2-k,p}} \\ &\leq C\|f\|_{W^{-k,p}} + (\operatorname{Vol} M)^{-1}\|1\|_{W^{2-k,p}}|\langle u, 1\rangle|. \end{aligned}$$

In Theorem 4.7, the closedness of im D was shown by hiding the required estimate in a seemingly obvious functional analytic statement. However, the sum ker $\nabla'_{q^*} \oplus \operatorname{im} \nabla_{q^*} \subset L^{q^*}(M, T^*M \otimes E)$ of the two closed subspaces on page 65 is closed only if we can establish an estimate $\|\nabla_{q^*} u\|_{q^*} \leq C \|\tau + \nabla_{q^*} u\|_{q^*}$ for all $\tau \in \ker \nabla'_{q^*}$. That is, we require an estimate $\|\nabla_{q^*} u\|_{q^*} \leq C \|\nabla'_{q^*} \nabla_{q^*} u\|_{W^{-1,q}}$, which will follow from Theorem 2.3". However, this estimate allows to drop all direct sum considerations and we are left with a much shorter proof.

Proof of Theorem 4.7':

We begin by deducing that $\operatorname{im} \tilde{D}$ is closed from Lemma E.3 (i), the compactness of the embedding $W^{1,q} \hookrightarrow L^q$, and the estimate for all $u \in W^{1,q}(M, E)$

$$\|u\|_{W^{1,q}} \leq C(\|Du\|_{W^{-1,q}} + \|u\|_q)$$

If ∇ is the trivial connection on a trivial bundle E, then $\tilde{D}u = \Delta u$ for all $u \in C^{\infty}_{\nu}(M, E)$, and hence the estimate follows from Theorem 2.3" for the $W^{1,q}$ closure of $C^{\infty}_{\nu}(M, E)$, i.e. for all $u \in W^{1,q}(M, E)$. For nontrivial bundles we use local trivializations and cutoff functions, and nontrivial connections introduce lower order terms. All of these can be estimated by the lower order term $||u||_q$. This finishes the proof of closedness of im \tilde{D} .

Now we proceed as in the original proof: Let $u \in \ker D$, then lemma 4.1 asserts for all $\psi \in W^{2,q^*}(M, E)$

$$0 = \nabla' \nabla u(\psi) = \int_M \langle \nabla u \wedge * \nabla \psi \rangle = \int_M \langle u, \nabla^* \nabla \psi \rangle + \int_{\partial M} \langle u, \nabla_\nu \psi \rangle.$$

Thus $(u, u|_{\partial M}) \in (\operatorname{im} D)^{\perp}$ with the operator D of theorem 4.6 for $p = q^*$, and this implies that $u \in \mathrm{H}^0(M, \nabla)$. On the other hand every horizontal section obviously lies in the kernel of \tilde{D} , so ker $\tilde{D} = \mathrm{H}^0(M, \nabla)$ and this is of finite dimension as before in theorem 4.6.

The same argument can be used to show that $(\operatorname{im} \tilde{D})^{\perp} = \operatorname{H}^{0}(M, \nabla)$: Let $u \in (\operatorname{im} \tilde{D})^{\perp} \subset W^{1,q^{*}}(M, E)$, i.e. $\tilde{D}\psi(u) = 0$ for all $\psi \in W^{1,q}(M, E)$. Then for all $\psi \in W^{2,q}(M, E)$ by lemma 4.1

$$0 = \nabla' \nabla \psi(u) = \int_M \langle \nabla \psi \wedge * \nabla u \rangle = \int_M \langle u, \nabla^* \nabla \psi \rangle + \int_{\partial M} \langle u, \nabla_\nu \psi \rangle.$$

This shows $(u, u|_{\partial M}) \in (\text{im } D)^{\perp}$ with p = q, and thus theorem 4.6 asserts that $u \in \mathrm{H}^0(M, \nabla)$. Conversely, every $u \in \mathrm{H}^0(M, \nabla)$ satisfies

$${\tilde D}\psi(u) \;=\; \int_M \left<\, \nabla\psi \wedge * \nabla u\,\right> \;=\; 0$$

for all $\psi \in W^{1,q}(M, E)$. So we have established $(\operatorname{im} \tilde{D})^{\perp} = \operatorname{H}^{0}(M, \nabla)$. Since im \tilde{D} is closed, the quotient norm is well defined on the cokernel $W^{1,q}(M, E)/\operatorname{im} \tilde{D}$ and makes it a Banach space. The cokernel has the same dimension as its dual space, which is isomorphic to $(\operatorname{im} \tilde{D})^{\perp}$. Thus codim im $\tilde{D} = \dim \operatorname{H}^{0}(M, \nabla) =$ dim ker \tilde{D} proving the Fredholm property and index 0 of \tilde{D} .

To determine the image of \tilde{D} explicitly note that im $\tilde{D} \subset \operatorname{im} \nabla'_q$ since ∇ maps $W^{1,q}(M, E)$ to $L^q(M, \mathrm{T}^*M \otimes E)$. On the other hand, by the definition of ∇' one has im $\nabla'_q \subset \mathrm{H}^0(M, \nabla)^{\perp} = (\operatorname{im} \tilde{D})^{\perp \perp} = \operatorname{im} \tilde{D}$. Hence indeed im $\tilde{D} = \operatorname{im} \nabla'_q$ as claimed.

Finally, we correct some more missing boundary terms in a partial integration. These were only missing in the case $k \ge 1$ for $\alpha \in W^{k,p}(M, T^*M)$.

Proof of Theorem 5.3 (i)

Let $\alpha^{\nu} \in \mathcal{C}^{\infty}(M, \mathbb{T}^*M)$ be an L^p -approximating sequence for α such that $\alpha^{\nu} \equiv 0$ in a neighbourhood of ∂M . Then one obtains for all $\phi \in \mathcal{T}$

$$\begin{split} &\int_{M} \alpha(X) \cdot \Delta \phi = \lim_{\nu \to \infty} \int_{M} d\iota_{X} \alpha^{\nu} \cdot d\phi \\ &= \lim_{\nu \to \infty} \left(\int_{M} \left\langle \mathcal{L}_{X} \alpha^{\nu}, \, \mathrm{d}\phi \right\rangle - \int_{M} \left\langle \iota_{X} \mathrm{d}\alpha^{\nu}, \, \mathrm{d}\phi \right\rangle \right) \\ &= \lim_{\nu \to \infty} \left(-\int_{M} \left\langle \alpha^{\nu}, \, \mathcal{L}_{X} \mathrm{d}\phi \right\rangle - \int_{M} \left\langle \alpha^{\nu}, \, \mathrm{d}\nu X \cdot \mathrm{d}\phi \right\rangle \\ &+ \int_{M} \left\langle \iota_{Y_{\alpha\nu}} \mathcal{L}_{X}g, \, \mathrm{d}\phi \right\rangle - \int_{M} \left\langle \mathrm{d}\alpha^{\nu}, \, \iota_{X}g \wedge \mathrm{d}\phi \right\rangle \right) \\ &= \lim_{\nu \to \infty} \left(-\int_{M} \left\langle \alpha^{\nu}, \, \mathrm{d}(\mathcal{L}_{X}\phi) \right\rangle - \int_{M} \left\langle \alpha^{\nu}, \, \mathrm{d}^{*}(\iota_{X}g \wedge \mathrm{d}\phi) \right\rangle \\ &+ \int_{M} \left\langle \left(\iota_{Y_{\alpha\nu}} \mathcal{L}_{X}g - \mathrm{div} X \cdot \alpha^{\nu} \right), \, \mathrm{d}\phi \right\rangle \right) \\ &= -\int_{M} \left\langle \alpha, \, \mathrm{d}(\mathcal{L}_{X}\phi) \right\rangle - \int_{M} \left\langle \alpha, \, \mathrm{d}^{*}(\iota_{X}g \wedge \mathrm{d}\phi) \right\rangle \\ &+ \int_{M} \left\langle \mathrm{d}^{*}(\iota_{Y_{\alpha}} \mathcal{L}_{X}g - \mathrm{div} X \cdot \alpha), \, \phi \right\rangle + \int_{\partial M} \left\langle \iota_{Y_{\alpha}} \mathcal{L}_{X}g - \mathrm{div} X \cdot \alpha \right\rangle \cdot \phi \\ &= \int_{M} \left(-f_{1} - f_{2} + \mathrm{d}^{*}(\iota_{Y_{\alpha}} \mathcal{L}_{X}g - \mathrm{div} X \cdot \alpha) \right) \phi + \int_{\partial M} \left(\mathcal{L}_{X}g(Y_{\alpha}, \nu) - \mathrm{div} X \cdot \alpha(\nu) - h \right) \cdot \phi \end{split}$$

Here we used Cartan's formula $\mathcal{L}_X \alpha = d\iota_X \alpha + \iota_X d\alpha$, and the vector field Y_α is given by $\iota_{Y_\alpha} g = \alpha$. In case $\mathcal{T} = \mathcal{C}^\infty_\delta(M)$ the boundary vanishes and we obtain regularity and estimates for $\alpha(X)$ as before. In case $\mathcal{T} = \mathcal{C}^\infty_\nu(M)$ the above calculation shows that $\alpha(X)$ is a weak solution of the inhomogenous Neumann problem (3.4) for $f \in W^{k-1,p}(M)$ as before and with the boundary condition

$$h - \mathcal{L}_X g(Y_\alpha, \nu) + \operatorname{div} X \cdot \alpha(\nu) \in W^{k,p}_{\partial}(M).$$

So the regularity theorem 3.2 asserts that $\alpha(X) \in W^{k+1,p}(M)$ with the estimate

$$\begin{aligned} \|\alpha(X)\|_{W^{k+1,p}} &\leq C\left(\left\|-f_1 - f_2 + d^* \left(\iota_{Y_{\alpha}} \mathcal{L}_X g - \operatorname{div} X \cdot \alpha\right)\right\|_{W^{k-1,p}} \right. \\ &+ \left\|h - \mathcal{L}_X g(Y_{\alpha}, \nu) + \operatorname{div} X \cdot \alpha(\nu)\right\|_{W^{k,p}_{\delta}} \\ &\leq C\left(\|f_1\|_{W^{k-1,p}} + \|f_2\|_{W^{k-1,p}} + \|h\|_{W^{k,p}_{\delta}} + \|\alpha\|_{W^{k,p}_{\delta}}\right). \end{aligned}$$

Again, in the first estimate, the constant from theorem 3.2 depends continuously on the metric in the $W^{k,\infty}$ -topology, but in the second inequality, the derivatives of g and X lead to continuous $W^{k+1,\infty}$ -dependence of the constant on the metric and the vector field.

References

[S] M. Schechter, On Lp Estimates and Regularity I, American Journal of Mathematics, Vol. 85, No. 1 (1963), pp. 1–13.