Erratum 2:Uhlenbeck Compactness

Katrin Wehrheim

April 4, 2009

Thanks to Tim Nguyen some essential mistakes are identified and corrected.

The proof of Theorem 2.3' in case $k=1$ relied on Theorem 4.3, whose proof had a gap, requiring the estimate in Theorem 2.3" below. This then also allows to prove Theorem 2.3' directly.

Theorem 2.3' For every $k \in \mathbb{N}$ and $1<p<\infty$ there exists a constant C such that the following holds: Suppose that $u \in \mathcal{D}(M)$ is a weak solution of the Neumann problem (wNP) for $f \in W^{-k, p}(M)$. Then $u \in W^{-k+2, p}(M)$ and

$$
\|u\|_{W^{-k+2, p}} \leq C\left(\|f\|_{W^{-k, p}}+|\langle u, 1\rangle|\right) .
$$

Theorem 2.3" For every $1<p<\infty$ there exists a constant C such that

$$
\|\psi\|_{W^{1, p}} \leq C\left(\|\Delta \psi\|_{W^{-1, p}}+|\langle\psi, 1\rangle|\right) \quad \forall \psi \in \mathcal{C}_{\nu}^{\infty}(M)
$$

Proof: Using Lemma E.3, the injectivity of the map $\psi \mapsto(\Delta \psi,\langle\psi, 1\rangle)$, and the compactness of the Sobolev embedding $W^{1, p}(M) \hookrightarrow L^{p}(M)$, it suffices to prove

$$
\|\psi\|_{W^{1, p}} \leq C\left(\|\Delta \psi\|_{W^{-1, p}}+\|\psi\|_{L^{p}}\right) \quad \forall \psi \in \mathcal{C}_{\nu}^{\infty}(M)
$$

From Theorem 2.3 we have

$$
\|\psi\|_{W^{2, p}} \leq C\left(\|\Delta \psi\|_{L^{p}}+\|\psi\|_{W^{1, p}}\right) \quad \forall \psi \in \mathcal{C}_{\nu}^{\infty}(M) .
$$

The dual of this estimate is (as shown in the proof of Theorem 2.3' below)

$$
\|\psi\|_{L^{p}} \leq C\left(\left\|\Delta_{(w N P)} \psi\right\|_{W^{-2, p^{*}}}+\|\psi\|_{W^{-1, p^{*}}}\right) \quad \forall \psi \in \mathcal{C}_{\nu}^{\infty}(M)
$$

where $\Delta_{(w N P)}$ is the operator weakly defined by (wNP). One can interpolate these, as in $\left[\mathrm{S}\right.$, Thm. 3.1] for a bounded domain $M \subset \mathbb{R}^{n}$ (with $A=\Delta$, $V=V^{\prime}=\mathcal{C}_{\nu}^{\infty}(M)$, and $N=N^{\prime}$ the constant functions) to prove the claimed estimate. Note here that Schechters norm

$$
|u|_{-1, p}=\operatorname{lub}_{v \in \mathcal{C}_{\nu}^{\infty}(M)}\|v\|_{W^{1, p^{*}}}^{-1}|\langle u, v\rangle|
$$

is equivalent to $\|u\|_{W^{-1, p}}$ since $\mathcal{C}_{\nu}^{\infty}(M) \subset W^{1, p^{*}}(M)$ is dense.

More in the spirit of this book, one can deduce the claimed $W^{1, p}$-estimates from the L^{p}-estimates in Theorem 2.3' for the Neumann problem and Theorem D.2' for the Dirichlet problem, applied to tangential resp. normal derivatives of ψ. That is, for any vector field $X \in \Gamma(T M)$ and $\phi \in \mathcal{C}^{\infty}(M)$ we calculate using Lemma 5.6

$$
\begin{aligned}
& -\int_{M} \mathcal{L}_{X} \psi \cdot \Delta \phi \\
& =\int_{M} \psi \cdot \mathcal{L}_{X} \Delta \phi+\int_{M} \operatorname{div} X \cdot \psi \cdot \Delta \phi-\int_{\partial M} g(X, \nu) \cdot \psi \cdot \Delta \phi \\
& =\int_{M} \psi \cdot \Delta \mathcal{L}_{X} \phi+\int_{M} \psi\left(\left[\mathcal{L}_{X}, \Delta\right] \phi+\operatorname{div} X \Delta \phi\right)-\int_{\partial M} g(X, \nu) \cdot \psi \cdot \Delta \phi \\
& =\int_{M} \Delta \psi \cdot \mathcal{L}_{X} \phi+\int_{M} \psi\left(\left[\mathcal{L}_{X}, \Delta\right] \phi+\operatorname{div} X \Delta \phi\right)-\int_{\partial M} \psi\left(g(X, \nu) \Delta \phi+\frac{\partial}{\partial \nu}\left(\mathcal{L}_{X} \phi\right)\right) .
\end{aligned}
$$

If $X \in \Gamma(T M)$ is tangential to ∂M and such that $[X, \nu]=0$, then the boundary term vanishes for all $\phi \in \mathcal{C}_{\nu}^{\infty}(M)$, showing that

$$
\begin{aligned}
\left|\int_{M} \mathcal{L}_{X} \psi \cdot \Delta \phi\right| & \leq\|\Delta \psi\|_{W^{-1, p}}\left\|\mathcal{L}_{X} \phi\right\|_{W^{1, p^{*}}}+\|\psi\|_{L^{p}} C_{X}^{\prime}\|\phi\|_{W^{2, p^{*}}} \\
& \leq C_{X}\left(\|\Delta \psi\|_{W^{-1, p}}+\|\psi\|_{L^{p}}\right)\|\phi\|_{W^{2, p^{*}}}
\end{aligned}
$$

for some constants C_{X}^{\prime}, C_{X} depending on X. Now the case $k=2$ of Theorem 2.3' provides
$\left\|\mathcal{L}_{X} \psi\right\|_{L^{p}} \leq C\left(\left\|\Delta_{(w N P)} \mathcal{L}_{X} \psi\right\|_{W^{-2, p^{*}}}+\left|\left\langle\mathcal{L}_{X} \psi, 1\right\rangle\right| \leq C^{\prime}\left(\|\Delta \psi\|_{W^{-1, p}}+\|\psi\|_{L^{p}}\right)\right.$,
where we estimated $\left|\left\langle\mathcal{L}_{X} \psi, 1\right\rangle\right|=\left|\int_{M} \operatorname{div} X \cdot \psi\right|$ by $\|\psi\|_{L^{p}}$.
In order to prove the Theorem it now remains to consider a vector field $X=\tilde{\nu}$ that restricts to the unit normal $\left.\tilde{\nu}\right|_{\partial M}=\nu$ on the boundary. Then the boundary term in the above partial integration is $\int_{\partial M} \psi\left(\Delta \phi+\frac{\partial}{\partial \nu}\left(\mathcal{L}_{\tilde{\nu}} \phi\right)\right)$. We claim that this term is of first order in ϕ for all $\phi \in \mathcal{C}_{\delta}^{\infty}(M)$, i.e. with $\left.\phi\right|_{\partial M}=0$. Indeed, if we pick local coordinates near ∂M with $\partial_{0}=\tilde{\nu}$ and $\left(\partial_{j}\right)_{j \geq 1}$ parallel to ∂M, then we can see that in highest order $-\Delta \phi=\partial_{0}^{2} \phi+\sum_{j \geq 1} \partial_{j}^{2} \phi=\partial_{0}^{2} \phi=\frac{\partial}{\partial \nu}\left(\mathcal{L}_{\tilde{\nu}} \phi\right)$ since all tangential derivatives of ϕ vanish. Hence we can express this boundary term as the restriction $\left.\Phi\right|_{\partial M}=\Delta \phi+\frac{\partial}{\partial \nu}\left(\mathcal{L}_{\tilde{\nu}} \phi\right)$ of a function $\Phi \in \mathcal{C}^{\infty}(M)$ given by first derivatives of ϕ near ∂M, multiplied with a cutoff function. Given any $\varepsilon>0$ we can choose this cutoff function such that $\|\Phi\|_{L^{p^{*}}} \leq \varepsilon\|\phi\|_{W^{2, p^{*}}}$ and $\|\Phi\|_{W^{1, p^{*}}} \leq C_{\varepsilon}\|\phi\|_{W^{2, p^{*}}}$ with a constant C_{ε} depending on $\varepsilon>0$. (To achieve this we multiply a given extension Φ by a cutoff function ζ and use the estimate $\|\zeta \Phi\|_{L^{p^{*}}} \leq C\|\zeta\|_{L^{q}}\|\Phi\|_{W^{1, p^{*}}}$, which follows from Hölder and Sobolev estimates with $q=n$ for $p^{*}<n$, any $q>n$ for $p^{*}=n$, and $q=p^{*}$ for $p^{*}<n$.) With that we obtain

$$
\begin{aligned}
\left|\int_{\partial M} \psi\left(\Delta \phi+\frac{\partial}{\partial \nu}\left(\mathcal{L}_{\tilde{\nu}} \phi\right)\right)\right| & =\left|\int_{M} \mathrm{~d}^{*}(\psi \cdot \Phi \cdot g(\tilde{\nu}, \cdot))\right| \\
& \leq C_{\tilde{\nu}}\left(\|\psi\|_{L^{p}}\|\Phi\|_{W^{1, p^{*}}}+\|\psi\|_{W^{1, p}}\|\Phi\|_{L^{p^{*}}}\right) \\
& \leq\left(\varepsilon\|\psi\|_{W^{1, p}}+C_{\varepsilon}^{\prime}\|\psi\|_{L^{p}}\right)\|\phi\|_{W^{2, p^{*}}}
\end{aligned}
$$

and hence for all $\phi \in \mathcal{C}_{\delta}^{\infty}(M)$

$$
\left|\int_{M} \mathcal{L}_{\tilde{\nu}} \psi \cdot \Delta \phi\right| \leq\left(C_{\tilde{\nu}}\|\Delta \psi\|_{W^{-1, p}}+C_{\varepsilon}^{\prime}\|\psi\|_{L^{p}}+\varepsilon\|\psi\|_{W^{1, p}}\right)\|\phi\|_{W^{2, p^{*}}}
$$

Now the estimate for the Dirichlet problem in case $k=2$ of Theorem D.2' directly implies

$$
\left\|\mathcal{L}_{\tilde{\nu}} \psi\right\|_{L^{p}} \leq C\left(C_{\tilde{\nu}}\|\Delta \psi\|_{W^{-1, p}}+C_{\varepsilon}^{\prime}\|\psi\|_{L^{p}}+\varepsilon\|\psi\|_{W^{1, p}}\right) .
$$

Finally, we pick a generating set of tangential vector fields X_{j} and sum over all estimates for $\mathcal{L}_{X_{j}} \psi$ and $\mathcal{L}_{\tilde{\nu}} \psi$ to obtain

$$
\begin{aligned}
\|\psi\|_{W^{1, p}} & \leq C\left(\|\psi\|_{L^{p}}+\left\|\mathcal{L}_{\tilde{\nu}} \psi\right\|_{L^{p}}+\sum_{j}\left\|\mathcal{L}_{X_{j}} \psi\right\|_{L^{p}}\right) \\
& \leq C(\varepsilon)\left(\|\Delta \psi\|_{W^{-1, p}}+\|\psi\|_{L^{p}}\right)+\varepsilon\|\psi\|_{W^{1, p}}
\end{aligned}
$$

with some constant $C(\varepsilon)$ depending on a free choice of $\varepsilon>0$. Now picking $\varepsilon=\frac{1}{2}$ and rearranging the inequality proves the theorem.

Proof of Theorem 2.3' :

In case $k \geq 2$ this theorem follows directly from Theorems 2.2 and 2.3 by duality: Every $\phi \in \mathcal{C}^{\infty}(M)$ can be written as $\phi=\Delta \psi+c_{\phi}$, where $c_{\phi}=(\operatorname{Vol} M)^{-1} \int_{M} \phi$ and $\psi \in \mathcal{C}_{\nu}^{\infty}(M)$ such that $\|\psi\|_{W^{k, p^{*}}} \leq C^{\prime}\left\|\phi-c_{\phi}\right\|_{W^{k-2, p^{*}}}$ for some constant C^{\prime}. In case $k=1$ this follows from Theorems 1.5 and 2.3". Now let $c:=$ $(\operatorname{Vol} M)^{-1}\langle u, 1\rangle$, then we obtain

$$
\begin{aligned}
|\langle u-c, \phi\rangle| & =\left|\left\langle u-c, \phi-c_{\phi}\right\rangle\right|=\left|\langle u, \Delta \psi\rangle-c \int_{M} \Delta \psi\right|=|\langle f, \psi\rangle| \\
& \leq\|f\|_{W^{-k, p}}\|\psi\|_{W^{k, p^{*}}} \leq C^{\prime}\|f\|_{W^{-k, p}}\left(\|\phi\|_{W^{k-2, p^{*}}}+\left|\int_{M} \phi\right|\right) \\
& \leq C\|f\|_{W^{-k, p}}\|\phi\|_{W^{k-2, p^{*}}} .
\end{aligned}
$$

Here the new constant C arises from $\left|\int_{M} \phi\right|=|\langle\phi, 1\rangle| \leq\|\phi\|_{W^{k-2, p^{*}}}\|1\|_{W^{2-k, p}}$. Since the above estimate holds for all $\phi \in \mathcal{C}^{\infty}(M)$, it proves that $u-c$ and hence also u lie in $\left(W^{k-2, p^{*}}(M)\right)^{*}=W^{-k+2, p}(M)$ with

$$
\begin{aligned}
\|u\|_{W^{2-k, p}} & \leq\|u-c\|_{W^{2-k, p}}+\|c\|_{W^{2-k, p}} \\
& \leq C\|f\|_{W^{-k, p}}+(\operatorname{Vol} M)^{-1}\|1\|_{W^{2-k, p}}|\langle u, 1\rangle| .
\end{aligned}
$$

In Theorem 4.7, the closedness of im \tilde{D} was shown by hiding the required estimate in a seemingly obvious functional analytic statement. However, the sum $\operatorname{ker} \nabla_{q^{*}}^{\prime} \oplus \operatorname{im} \nabla_{q^{*}} \subset L^{q^{*}}\left(M, T^{*} M \otimes E\right)$ of the two closed subspaces on page 65 is closed only if we can establish an estimate $\left\|\nabla_{q^{*}} u\right\|_{q^{*}} \leq C\left\|\tau+\nabla_{q^{*}} u\right\|_{q^{*}}$ for all $\tau \in \operatorname{ker} \nabla_{q^{*}}^{\prime}$. That is, we require an estimate $\left\|\nabla_{q^{*}} u\right\|_{q^{*}} \leq C\left\|\nabla_{q^{*}}^{\prime} \nabla_{q^{*}} u\right\|_{W^{-1, q}}$, which will follow from Theorem 2.3". However, this estimate allows to drop all direct sum considerations and we are left with a much shorter proof.

Proof of Theorem 4.7^{\prime} :

We begin by deducing that $\operatorname{im} \tilde{D}$ is closed from Lemma E. 3 (i), the compactness of the embedding $W^{1, q} \hookrightarrow L^{q}$, and the estimate for all $u \in W^{1, q}(M, E)$

$$
\|u\|_{W^{1, q}} \leq C\left(\|\tilde{D} u\|_{W^{-1, q}}+\|u\|_{q}\right)
$$

If ∇ is the trivial connection on a trivial bundle E, then $\tilde{D} u=\Delta u$ for all $u \in \mathcal{C}_{\nu}^{\infty}(M, E)$, and hence the estimate follows from Theorem 2.3 " for the $W^{1, q_{-}}$ closure of $\mathcal{C}_{\nu}^{\infty}(M, E)$, i.e. for all $u \in W^{1, q}(M, E)$. For nontrivial bundles we use local trivializations and cutoff functions, and nontrivial connections introduce lower order terms. All of these can be estimated by the lower order term $\|u\|_{q}$. This finishes the proof of closedness of im \tilde{D}.

Now we proceed as in the original proof: Let $u \in \operatorname{ker} \tilde{D}$, then lemma 4.1 asserts for all $\psi \in W^{2, q^{*}}(M, E)$

$$
0=\nabla^{\prime} \nabla u(\psi)=\int_{M}\langle\nabla u \wedge * \nabla \psi\rangle=\int_{M}\left\langle u, \nabla^{*} \nabla \psi\right\rangle+\int_{\partial M}\left\langle u, \nabla_{\nu} \psi\right\rangle .
$$

Thus $\left(u,\left.u\right|_{\partial M}\right) \in(\operatorname{im} D)^{\perp}$ with the operator D of theorem 4.6 for $p=q^{*}$, and this implies that $u \in \mathrm{H}^{0}(M, \nabla)$. On the other hand every horizontal section obviously lies in the kernel of \tilde{D}, so $\operatorname{ker} \tilde{D}=\mathrm{H}^{0}(M, \nabla)$ and this is of finite dimension as before in theorem 4.6.

The same argument can be used to show that $(\operatorname{im} \tilde{D})^{\perp}=\mathrm{H}^{0}(M, \nabla)$: Let $u \in(\operatorname{im} \tilde{D})^{\perp} \subset W^{1, q^{*}}(M, E)$, i.e. $\tilde{D} \psi(u)=0$ for all $\psi \in W^{1, q}(M, E)$. Then for all $\psi \in W^{2, q}(M, E)$ by lemma 4.1

$$
0=\nabla^{\prime} \nabla \psi(u)=\int_{M}\langle\nabla \psi \wedge * \nabla u\rangle=\int_{M}\left\langle u, \nabla^{*} \nabla \psi\right\rangle+\int_{\partial M}\left\langle u, \nabla_{\nu} \psi\right\rangle .
$$

This shows $\left(u,\left.u\right|_{\partial M}\right) \in(\operatorname{im} D)^{\perp}$ with $p=q$, and thus theorem 4.6 asserts that $u \in \mathrm{H}^{0}(M, \nabla)$. Conversely, every $u \in \mathrm{H}^{0}(M, \nabla)$ satisfies

$$
\tilde{D} \psi(u)=\int_{M}\langle\nabla \psi \wedge * \nabla u\rangle=0
$$

for all $\psi \in W^{1, q}(M, E)$. So we have established $(\operatorname{im} \tilde{D})^{\perp}=\mathrm{H}^{0}(M, \nabla)$. Since $\operatorname{im} \tilde{D}$ is closed, the quotient norm is well defined on the cokernel $W^{1, q}(M, E) / \operatorname{im} \tilde{D}$ and makes it a Banach space. The cokernel has the same dimension as its dual space, which is isomorphic to $(\operatorname{im} \tilde{D})^{\perp}$. Thus $\operatorname{codimim} \tilde{D}=\operatorname{dim} \mathrm{H}^{0}(M, \nabla)=$ $\operatorname{dim} \operatorname{ker} \tilde{D}$ proving the Fredholm property and index 0 of \tilde{D}.

To determine the image of \tilde{D} explicitly note that im $\tilde{D} \subset$ im ∇_{q}^{\prime} since ∇ maps $W^{1, q}(M, E)$ to $L^{q}\left(M, \mathrm{~T}^{*} M \otimes E\right)$. On the other hand, by the definition of ∇^{\prime} one has $\operatorname{im} \nabla_{q}^{\prime} \subset \mathrm{H}^{0}(M, \nabla)^{\perp}=(\operatorname{im} \tilde{D})^{\perp \perp}=\operatorname{im} \tilde{D}$. Hence indeed $\operatorname{im} \tilde{D}=\operatorname{im} \nabla_{q}^{\prime}$ as claimed.

Finally, we correct some more missing boundary terms in a partial integration. These were only missing in the case $k \geq 1$ for $\alpha \in W^{k, p}\left(M, T^{*} M\right)$.

Proof of Theorem 5.3 (i)

Let $\alpha^{\nu} \in \mathcal{C}^{\infty}\left(M, \mathrm{~T}^{*} M\right)$ be an L^{p}-approximating sequence for α such that $\alpha^{\nu} \equiv 0$ in a neighbourhood of ∂M. Then one obtains for all $\phi \in \mathcal{T}$

$$
\begin{aligned}
& \int_{M} \alpha(X) \cdot \Delta \phi=\lim _{\nu \rightarrow \infty} \int_{M} \mathrm{~d} \iota_{X} \alpha^{\nu} \cdot \mathrm{d} \phi \\
&=\lim _{\nu \rightarrow \infty}(\left(\int_{M}\left\langle\mathcal{L}_{X} \alpha^{\nu}, \mathrm{d} \phi\right\rangle-\int_{M}\left\langle\iota_{X} \mathrm{~d} \alpha^{\nu}, \mathrm{d} \phi\right\rangle\right) \\
&=\lim _{\nu \rightarrow \infty}(-\int_{M}\left\langle\alpha^{\nu}, \mathcal{L}_{X} \mathrm{~d} \phi\right\rangle-\int_{M}\left\langle\alpha^{\nu}, \operatorname{div} X \cdot \mathrm{~d} \phi\right\rangle \\
&\left.\quad+\int_{M}\left\langle\iota_{Y_{\alpha}{ }^{\nu}} \mathcal{L}_{X} g, \mathrm{~d} \phi\right\rangle-\int_{M}\left\langle\mathrm{~d} \alpha^{\nu}, \iota_{X} g \wedge \mathrm{~d} \phi\right\rangle\right) \\
&=\lim _{\nu \rightarrow \infty}\left(-\int_{M}\left\langle\alpha^{\nu}, \mathrm{d}\left(\mathcal{L}_{X} \phi\right)\right\rangle-\int_{M}\left\langle\alpha^{\nu}, \mathrm{d}^{*}\left(\iota_{X} g \wedge \mathrm{~d} \phi\right)\right\rangle\right. \\
&\left.\quad+\int_{M}\left\langle\left(\iota_{Y_{\alpha} \nu} \mathcal{L}_{X} g-\operatorname{div} X \cdot \alpha^{\nu}\right), \mathrm{d} \phi\right\rangle\right) \\
&=-\int_{M}\left\langle\alpha, \mathrm{~d}\left(\mathcal{L}_{X} \phi\right)\right\rangle-\int_{M}\left\langle\alpha, \mathrm{~d}^{*}\left(\iota_{X} g \wedge \mathrm{~d} \phi\right)\right\rangle \\
& \quad+\int_{M}\left\langle\mathrm{~d}^{*}\left(\iota_{Y_{\alpha}} \mathcal{L}_{X} g-\operatorname{div} X \cdot \alpha\right), \phi\right\rangle+\int_{\partial M} *\left(\iota_{Y_{\alpha}} \mathcal{L}_{X} g-\operatorname{div} X \cdot \alpha\right) \cdot \phi \\
&=\int_{M}\left(-f_{1}-f_{2}+\mathrm{d}^{*}\left(\iota_{Y_{\alpha}} \mathcal{L}_{X} g-\operatorname{div} X \cdot \alpha\right)\right) \phi+\int_{\partial M}\left(\mathcal{L}_{X} g\left(Y_{\alpha}, \nu\right)-\operatorname{div} X \cdot \alpha(\nu)-h\right) \cdot \phi
\end{aligned}
$$

Here we used Cartan's formula $\mathcal{L}_{X} \alpha=\mathrm{d} \iota_{X} \alpha+\iota_{X} \mathrm{~d} \alpha$, and the vector field Y_{α} is given by $\iota_{Y_{\alpha}} g=\alpha$. In case $\mathcal{T}=\mathcal{C}_{\delta}^{\infty}(M)$ the boundary vanishes and we obtain regularity and estimates for $\alpha(X)$ as before. In case $\mathcal{T}=\mathcal{C}_{\nu}^{\infty}(M)$ the above calculation shows that $\alpha(X)$ is a weak solution of the inhomogenous Neumann problem (3.4) for $f \in W^{k-1, p}(M)$ as before and with the boundary condition

$$
h-\mathcal{L}_{X} g\left(Y_{\alpha}, \nu\right)+\operatorname{div} X \cdot \alpha(\nu) \in W_{\partial}^{k, p}(M)
$$

So the regularity theorem 3.2 asserts that $\alpha(X) \in W^{k+1, p}(M)$ with the estimate

$$
\begin{aligned}
&\|\alpha(X)\|_{W^{k+1, p}} \leq C\left(\left\|-f_{1}-f_{2}+\mathrm{d}^{*}\left(\iota_{Y_{\alpha}} \mathcal{L}_{X} g-\operatorname{div} X \cdot \alpha\right)\right\|_{W^{k-1, p}}\right. \\
&\left.+\left\|h-\mathcal{L}_{X} g\left(Y_{\alpha}, \nu\right)+\operatorname{div} X \cdot \alpha(\nu)\right\|_{W_{\delta}^{k, p}}\right) \\
& \leq C\left(\left\|f_{1}\right\|_{W^{k-1, p}}+\left\|f_{2}\right\|_{W^{k-1, p}}+\|h\|_{W_{\delta}^{k, p}}+\|\alpha\|_{W^{k, p}}\right)
\end{aligned}
$$

Again, in the first estimate, the constant from theorem 3.2 depends continuously on the metric in the $W^{k, \infty}$-topology, but in the second inequality, the derivatives of g and X lead to continuous $W^{k+1, \infty}$-dependence of the constant on the metric and the vector field.

References

[S] M. Schechter, On Lp Estimates and Regularity I, American Journal of Mathematics, Vol. 85, No. 1 (1963), pp. 1-13.

