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Proof of theorem 2.2 :
The necessity of the condition

∫

M
f = 0 for the existence of a solution of the

Neumann problem follows as in the case p = 2: If u ∈ W k+2,p(M) solves
(NP) then by lemma N it also solves (wNP), which (tested with ψ ≡ 1) yields
∫

M
f = 0.

In order to prove the sufficiency of that condition let f ∈ W k,p(M) be given
such that

∫

M
f = 0. Choose a sequence f̃i ∈ C∞(M) that converges to f in the

W k,p-norm. Then also
∫

M
f̃i converges to

∫

M
f = 0 since M has finite volume.

Thus

fi := f̃i −
1

Vol(M)

∫

M

f̃i ∈ C∞(M)

is a sequence of functions with vanishing mean value that still converges to f
in the W k,p-norm. Then the L2-theorems 1.5 and 1.3 provide solutions ui ∈
C∞(M) of the Neumann problem (NP) with f replaced by fi. We can choose
the ui to have vanishing mean value such that theorem 2.3 provides

‖ui − uj‖W k+2,p ≤ C‖∆ui − ∆uj‖W k,p = C‖fi − fj‖W k,p −→
i,j→∞

0.

Thus these ui converge to some u ∈ W k+2,p(M). The limit solves ∆u = f

due to the continuity of ∆ : W k+2,p(M) →W k,p(M) and theorem B.10 implies
that u also meets the Neumann boundary condition. Uniqueness follows from
corollary 1.9. 2

Proof of theorem 2.1 :
Testing (wNP) with ψ ≡ 1 we see that

∫

M
f = 0 holds automatically. So from

the already established theorem 2.2 we obtain a solution ũ ∈W k+2,p(M) of the
Neumann problem (NP) for the given f ∈ W k,p(M).
...

1



Theorem 3.1 :
Let f ∈ W k,p(M) and g ∈ W

k+1,p
∂ (M). Then there exists a solution u ∈

W k+2,p(M) of (3.1) if and only if (3.2) holds. This solution is unique up to an
additive constant.
Proof of theorem 3.1 :
The remark just before the theorem shows the necessity of (3.2) for the existence
of a solution of (3.1).

For the sufficiency let functions f ∈ W k,p(M) and g ∈W
k+1,p
∂ (M) be given

that satisfy (3.2). Choose some G ∈ W k+1,p(M) with G|∂M = g then by
theorem 3.4 there exists v ∈ W k+2,p(M) that solves the boundary condition
∂v
∂ν

= G|∂M = g. Now we have by assumption

∫

M

(f − ∆v) =

∫

M

f +

∫

∂M

∂v
∂ν

=

∫

M

f +

∫

∂M

g = 0.

Thus theorem 2.2 asserts the existence of a solution ũ ∈ W k+2,p(M) of the
Neumann problem (NP) with f replaced by f − ∆v. The solution of the inho-
mogeneous problem (3.1) is then given by u = ũ+ v ∈W k+2,p(M). Uniqueness
follows from corollary 1.9. 2

Theorem 3.1, its proof, theorem 5.3, and proof of theorem 5.5:
One should replace W k,p

δ by W k,p
∂ .

Proof of lemma 5.6: To see (i) choose coordinates near a point in N ⊂ ∂M

such that ν = ∂
∂x0 and ∂

∂x1 , . . . ,
∂

∂xn are orthonormal tangential directions.
...
For (iv) let F = 〈α , β 〉, then calculate in local geodesic coordinates

LXF =
∑

i,j

Xj∂j

(

αiβi

)

=
∑

i,j

(

Xj∂jαi + αj∂iX
j
)

βi +
∑

i,j

αi

(

Xj∂jβi + βj∂iX
j
)

−
∑

i,j

αj

(

∂iX
j + ∂jX

i
)

βi

= 〈 LXα , β 〉 + 〈α , LXβ 〉 − 〈 ιYα
(LXg) , β 〉 .

Here we used the formulae LXα = Xj∂jαi+αj∂iX
j and (LXg)ij = ∂iX

j +∂jX
i

for the Lie derivatives in local geodesic coordinates, and (Yα)j = αj for the
vector field Yα that is dual to α. 2

Proposition 7.6:
... Then there exists a subsequence (νi)i∈N and a sequence of gauge transfor-
mations ui ∈ G2,p

loc (P ) such that

lim sup
i→∞

∥

∥ui ∗Aνi
∥

∥

W `,p(Mk)
<∞ ∀k ∈ N, ` ∈ I.
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Proof of proposition 7.6 :
... Hence for every ` ∈ I and k ∈ N

lim sup
i→∞

∥

∥ui ∗Aνi
∥

∥

W `,p(Mk)
≤ sup

j>k

∥

∥w(k, µj,j)
∗Aµj,j

∥

∥

W `,p(Mk)

≤ sup
i∈N

∥

∥w(k, µk,i)
∗Aµk,i

∥

∥

W `,p(Mk)
< ∞.

2

Proof of theorem 7.5 :
... Now proposition 7.6 with I = {1} provides a subsequence (νi)i∈N and a
sequence of gauge transformations ui ∈ G2,p

loc (P ) such that

lim sup
i→∞

∥

∥ui ∗Aνi
∥

∥

W 1,p(Mk)
<∞ ∀k ∈ N.

...

In the induction for the local slice theorem 8.1 the estimates on A1 − A0

are weaker than (8.13) and have to be established separately. The change of
constants unfortunately affects the entire proof.
Proof of theorem 8.1 :
Fix a connection Â ∈ A1,p(P ) and a constant c0 > 0 and consider a connection
A ∈ A1,p(P ) that satisfies (8.1) for some δ > 0. Again the idea of the proof
is to use Newtons iteration method to solve the boundary value problem for u.
One defines connections Ai and gauge transformations ui = exp(ξ1) . . . exp(ξi)
such that u∗iA = Ai and Ai converges to a connection A∞ that is in relative

Coulomb gauge with respect to Â. Then one proves that in fact A∞ = u∗A for
some gauge transformation u.

In the case of varying metrics in remark 8.2 one chooses theW 1,∞-neighbour-
hood of the given metric g as in lemma 8.5 (iii). Moreover, choose this neigh-
bourhood, that is ε > 0, sufficiently small such that (8.6) holds with a uniform
constant for all metrics g′ that satisfy ‖g − g′‖W 1,∞ ≤ ε. Then all constants in
the following will be independent of the metric g′ that is used in the boundary
value problem. The constants in Sobolev inequalities are also independent of
g′ since they are defined with respect to g. That way the local slice theorem is
proven with uniform constants for all metrics in the W 1,∞-neighbourhood of g.

So we construct the sequences of gauge transformations exp(ξi) ∈ G2,p(P )
and connections Ai ∈ A1,p(P ) by the following Newton iteration: A0 := A and
Ai+1 := exp(ξi)

∗Ai, where ξi ∈ W 2,p(M, gP ) is provided by lemma 8.5 (ii). It
is the solution of

{

d∗
Â
d

Â
ξi = d∗

Â
(Â−Ai),

∗d
Â
ξi|∂M = ∗(Â−Ai)|∂M ,

with

‖ξi‖W 2,p ≤ C1

(

‖d∗
Â
(Ai − Â)‖p + ‖ ∗ (Ai − Â)|∂M‖W

1,p

∂

)

,

‖ξi‖W 1,q ≤ C1‖Ai − Â‖q. (8.11)
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We claim that for sufficiently small δ > 0 there exist constants C0, CI , CII such
that this sequence satisfies for all i ∈ N

‖d∗
Â
(Ai − Â)‖p + ‖ ∗ (Ai − Â)|∂M‖W

1,p

∂
≤ 2−iCI‖A− Â‖q, (8.12)

‖Ai −Ai−1‖W 1,p ≤ 2−iCII‖A− Â‖q if i ≥ 2. (8.13)

Let C3 be the constant from (8.6) and let C2 be the constant from lemma 8.6 (ii)
for c2 = C1C3c0. The constantsCI and CII will be determined from c0, C1, C2, C3,
and some Sobolev constants. The induction step for (8.12) and (8.13) will re-
quire a sufficiently small choice of δ > 0, depending on CI and CII . This is the
same procedure as for theorem 8.3 – we first fix CI and CII and then determine
a suitable δ > 0, just that we do not give the more complicated formulae here.

Before starting the induction we note some estimates for A1−A0. We choose
δ ≤ 1, then lemma 8.6 and (8.11), (8.6) provide a constant C0 ≥ 1 such that

‖A1 −A0‖q ≤ C2

(

1 + ‖A− Â‖q

)

‖ξ0‖W 1,q ≤ C1C2(1 + δ)‖A− Â‖q ≤ C0‖A− Â‖q,

‖A1 −A0‖W 1,p ≤ C2

(

1 + ‖A− Â‖W 1,p

)

‖ξ0‖W 2,p

≤ C1C2(1 + c0)
(

‖d∗
Â
(Aj − Â)‖p + ‖ ∗ (Aj − Â)|∂M‖W

1,p

∂

)

≤ C1C2C3(1 + 2c0)‖A− Â‖W 1,p ≤ C0‖A− Â‖W 1,p .

Now assume that (8.13) holds for all i = 2, . . . , j with some j ≥ 2, then we have

‖Aj − Â‖W 1,p ≤ ‖A0 − Â‖W 1,p + ‖A1 −A0‖W 1,p +

j
∑

i=2

‖Ai −Ai−1‖W 1,p

≤ (1 + C0)‖A− Â‖W 1,p +
(
∑j

i=2 2−i
)

CII‖A− Â‖q

≤ 2C0‖A− Â‖W 1,p + CII‖A− Â‖q

≤ 2C0c0 + CIIδ ≤ 3C0c0. (8.14)

Here we choose δ ≤ c0C0C
−1
II . Moreover, (8.13) implies that with a Sobolev

constant C and for CII ≥ 2C−1C0

‖Aj − Â‖q ≤ ‖A0 − Â‖q + ‖A1 −A0‖q +

j
∑

i=2

C‖Ai − Ai−1‖W 1,p

≤ (1 + C0)‖A− Â‖q +
(
∑j

i=2 2−i
)

CCII‖A− Â‖q

≤ (2C0 + CCII )‖A− Â‖q ≤ 2CCIIδ. (8.15)

Note that both (8.14) and (8.15) also hold for j = 0 and j = 1. That can be
used as start of the induction. Then for the induction step suppose that (8.12)
and (8.13) are true for all i ≤ j (so also (8.14) and (8.15) hold). In case j = 1
this means that we can only use (8.12), (8.14), and (8.15); in case j = 0 we
will only use (8.14) and (8.15). Then we have to prove (8.12) and (8.13) for
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i = j + 1. Firstly, (8.11) provides the bound for lemma 8.6 (ii) that allows to
use the estimates with the constant C2 fixed above : In case j = 0

‖ξ0‖W 2,p ≤ C1

(

‖d∗
Â
(A0 − Â)‖p + ‖ ∗ (A0 − Â)|∂M‖W

1,p

∂

)

≤ C1C3‖A− Â‖W 1,p

≤ C1C3c0 =: c2,

and for the case j ≥ 1 use (8.12) and choose δ ≤ 2C−1
I C3c0 such that

‖ξj‖W 2,p ≤ C1

(

‖d∗
Â
(Aj − Â)‖p + ‖ ∗ (Aj − Â)|∂M‖

W
1,p

∂

)

≤ 2−jC1CI‖A− Â‖q

≤ 1
2C1CIδ ≤ c2.

Now since d∗
Â
Â = d∗

Â

(

d
Â
ξj +Aj

)

and ∗Â|∂M = ∗(d
Â
ξj +Aj)|∂M we can rewrite

d∗
Â
(Aj+1 − Â) = d∗

Â

(

exp(ξj)
∗Aj −Aj − dAj

ξj
)

+ d∗
Â

[

Aj − Â, ξj
]

, (8.16)

∗
(

Aj+1 − Â
)

|∂M = ∗
(

exp(ξj)
∗Aj −Aj − dAj

ξj
)

|∂M +
[

∗
(

Aj − Â
)

|∂M , ξj
]

.

The first terms in both right hand side expressions are estimated by lemma 8.6 (ii)
and with the help of (8.6), (8.11), and (8.14) :

∥

∥d∗
Â

(

exp(ξj)
∗Aj −Aj − dAj

ξj
)∥

∥

p
+

∥

∥∗
(

exp(ξj)
∗Aj −Aj − dAj

ξj
)

|∂M

∥

∥

W
1,p

∂

≤ C3

∥

∥exp(ξj)
∗Aj −Aj − dAj

ξj
∥

∥

W 1,p

≤ C2C3

(

1 + ‖Aj − Â‖W 1,p

)

‖ξj‖W 1,q‖ξj‖W 2,p

≤ C2
1C2C3(1 + 3C0c0)‖Aj − Â‖q

(

‖d∗
Â
(Aj − Â)‖p + ‖ ∗ (Aj − Â)|∂M‖

W
1,p

∂

)

Now consider the upper second term in (8.16). Firstly, from the local formula
(A.9) for d∗

Â
and the Jacobi identity one obtains

d∗
Â
[Aj − Â, ξj ] = [d∗

Â
(Aj − Â), ξj ] −

〈

Aj − Â , d
Â
ξj

〉

.

As in the proof of lemma 8.6 let 1
r

= 1
p
− 1

q
, then the Sobolev inequality for

W 2,p ↪→W 1,r holds. Thus from (8.11) and with a finite constant C arising from
several Sobolev constants one obtains
∥

∥d∗
Â
[Aj − Â, ξj ]

∥

∥

p
≤ ‖d∗

Â
(Aj − Â)‖p‖ξj‖∞ + ‖Aj − Â‖q‖dÂ

ξj‖r

≤ C
(

‖ξj‖W 1,q‖d∗
Â
(Aj − Â)‖p + ‖Aj − Â‖q‖ξj‖W 2,p

)

≤ CC1‖Aj − Â‖q

(

‖d∗
Â
(Aj − Â)‖p + ‖ ∗ (Aj − Â)|∂M‖W

1,p

∂

)

For the lower second term in (8.16) use (8.11) and lemma B.3 with r = p and
s = q to obtain a constant C such that

∥

∥[∗(Aj − Â)|∂M , ξj ]
∥

∥

W
1,p

∂

≤ C‖ ∗ (Aj − Â)|∂M‖W
1,p

∂
‖ξj‖W 1,q

≤ CC1‖ ∗ (Aj − Â)|∂M‖W
1,p

∂
‖Aj − Â‖q.
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Now we have considered all terms in (8.16) and found a finite constant C4

depending on c0, C0, C1, C2, C3, and some Sobolev constants C such that

‖d∗
Â
(Aj+1 − Â)‖p + ‖ ∗ (Aj+1 − Â)|∂M‖

W
1,p

∂

≤ C4‖Aj − Â‖q

(

‖d∗
Â
(Aj − Â)‖p + ‖ ∗ (Aj − Â)|∂M‖W

1,p

∂

)

≤ C4 · 2CCIIδ · 2
−jCI‖A− Â‖q

≤ 2−(j+1)CI‖A− Â‖q

In the above estimates we used (8.12) for i = j and (8.15), and we made the
possibly even smaller choice δ ≤ (4C4CCII )−1. Since we used (8.12) this only
holds for j ≥ 1; in case j = 0 one has to use (8.6) and (8.1) to estimate

‖d∗
Â
(A1 − Â)‖p + ‖ ∗ (A1 − Â)|∂M‖W

1,p

∂

≤ C4‖A0 − Â‖q

(

‖d∗
Â
(A0 − Â)‖p + ‖ ∗ (A0 − Â)|∂M‖W

1,p

∂

)

≤ C3C4‖A− Â‖q‖A− Â‖W 1,p

≤ c0C3C4‖A− Â‖q.

In both cases, this proves the induction step for (8.12); where in the step for
j = 0 the constant CI is fixed as CI = 2c0C3C4.

Furthermore, (8.13) is shown in case i = j + 1 ≥ 2 with the help of
lemma 8.6 (ii), (8.14), (8.11), and again (8.12) for i = j ≥ 1:

‖Aj+1 −Aj‖W 1,p ≤ C2

(

1 + ‖Aj − Â‖W 1,p

)

‖ξj‖W 2,p

≤ C1C2(1 + 3C0c0)
(

‖d∗
Â
(Aj − Â)‖p + ‖ ∗ (Aj − Â)|∂M‖W

1,p

∂

)

≤ 2−jCIC1C2(1 + 3C0c0)‖A− Â‖q.

This proves the induction step for (8.13) with CII = 1
2CIC1C2(1 + 3C0c0). So

we have proved (8.12) and (8.13) by induction.
Now (8.13) shows that the Ai form a W 1,p-Cauchy sequence. Indeed, for all

k > j ≥ 1

‖Ak −Aj‖W 1,p ≤
k

∑

i=j+1

‖Ai −Ai−1‖W 1,p ≤
k

∑

i=j+1

2−iCI‖A− Â‖q ≤ 2−jδCI .

Since A1,p(P ) is a Banach space this implies that the Ai converge in the W 1,p-
norm to some A∞ ∈ A1,p(P ). By continuity this limit connection also satisfies
(8.14) and (8.15), hence one obtains a constant CCG = 2C0 +CCII (where C is
the Sobolev constant for the embedding W 1,p ↪→ Lq) such that

‖A∞ − Â‖W 1,p ≤ CCG‖A− Â‖W 1,p ,

‖A∞ − Â‖q ≤ CCG‖A− Â‖q.
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From (8.12) one sees that

d∗
Â
(A∞ − Â) = lim

i→∞
d∗

Â
(Ai − Â) = 0,

∗(A∞ − Â)
∣

∣

∂M
= lim

i→∞
∗
(

Ai − Â
)∣

∣

∂M
= 0.

So it remains to show that A∞ = u∗A for some u ∈ G2,p(P ). For that purpose
consider the sequence ui = exp(ξ1) . . . exp(ξi). By lemma A.5 it lies in G2,p(P ),
and it satisfies u∗iA = Ai. Now lemma A.8 applies since Ai converges in the
W 1,p-norm and A is uniformly W 1,p-bounded anyway. Thus there exists a
subsequence of the ui that converges in the C0-norm to some u ∈ G2,p(P ). For
the same subsequence (again labelled by i) u−1

i dui converges to u−1du in the
L2p-norm. Now u∗A = A∞ since this is the unique L2p-limit of the sequence

u−1
i Aui + u−1

i dui = u∗iA = Ai.

Thus u is the required gauge transformation that puts A in relative Coulomb
gauge. 2

Proof of theorem 8.3 :
... It remains to show that A∞ = u∗A for some u ∈ G1,r(P ). For that purpose
consider the sequence ui = exp(ξ1) . . . exp(ξi). By lemma A.5 it lies in G1,r(P ),
and it moreover satisfies u∗iA = Ai. Now lemma A.8 applies (with k = 1 and
p = r) since the Ai converge in the Lr-norm and A is uniformly Lr-bounded any-
way. Thus there exists a subsequence of the ui that converges in the C0-norm to
some u ∈ G1,r(P ). For the same subsequence (again labelled by i) u−1

i dui con-
verges to u−1du in the weak Lr-topology. Now we obtain u∗A = A∞ since this
is the unique weak Lr-limit of the sequence u−1

i Aui + u−1
i dui = u∗iA = Ai.

Thus u is the required gauge transformation that puts A in relative Coulomb
gauge with respect to Â. 2

Proposition 9.8 and Lemma 9.9 : Let p > n
2 . ...

Proof of theorem 10.3 :
... So proposition 7.6 with I = N provides a subsequence (νi)i∈N and a
sequence of gauge transformations ui ∈ G2,p

loc (P ) such that

lim sup
i→∞

∥

∥ui ∗Ãνi − Ã
∥

∥

W `,p(Mk)
<∞ ∀k, ` ∈ N.

...

Lemma A.8 : ...

(ii) There exists a subsequence of the uν that converges in the C0-topology to
some u∞ ∈ Gk,p(P ) and for all trivializations (uν

α)−1duν
α → (u∞α )−1du∞α

in the weak W k−1,p-topology.
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Corollary B.9 : Let U be a compact Riemannian n-manifold and let G be a
compact Lie group. Let k ∈ N and 1 ≤ p < ∞ be such that kp > n. Then
for every sequence (ui)i∈N in Gk,p(U) with a uniform bound on ‖u−1

i dui‖W k−1,p

there exists a subsequence that converges in the C0-topology to a gauge trans-
formation u ∈ Gk,p(U). Moreover, u−1

i dui converges to u−1du in the weak
W k−1,p-topology.
...
Proof:
... Thus u = Φ−1

◦v is well defined, lies in Gk,p(M,G), and is the C0-limit of the
ui. At the same time, u−1du is the weak W k−1,p-limit of the u−1

i dui.
... (note that dΦ is a bijection between TG and T(Φ(G))). 2
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various small corrections

p.17
We denote by 〈u , φ 〉 the pairing of a distribution u ∈ D(M) with φ ∈ C∞(M).
p.34
In fact, theorem 2.3 ’ is only used in chapter 5.
p.39
‖LXu‖W `+2,p ≤ C

(

‖∆LXu‖W `,p + ‖LXu‖W `+1,p

)

p.41
c := (VolM)−1 〈u, 1 〉
‖u‖(W k,p∗(M))∗ ≤ . . . ≤ C‖f‖(W k,p∗(M))∗ + C(VolM)−1| 〈u , 1 〉 |
p.66
... ∇ is given by connection potentials Aα ∈ Lr(Uα,T

∗Uα ⊗ EndV ).
p.69
For the Sobolev embedding one checks that 1 − n

p
> − n

2p
due to p > n

2 .
p.78 within the boundary value problems
d∗α ∈W k,p(M)
α0|∂H = 0

p.84 the estimates are meant for

∣

∣

∣

∣

∫

M

α(X) · ∆φ

∣

∣

∣

∣

p.88
If X is perpendicular to the boundary, then the estimate holds for all φ ∈
C∞

δ (M); if X is tangential, then it holds for φ ∈ C∞
ν (M).

p.96
... the Sobolev inequality for W 1,p ↪→ L2p

p.97
‖FAi

‖p ≤ C
(

‖Ai‖W 1,p + ‖Ai‖
2
W 1,p

)

p.101
... the perturbation S also is a linear operator from W 2,p

m (B, g) to Z
... we can use a property (A.6) of the norm on g

p.105
Now W 2, n

2 (M,G) can be defined as the closure of C∞(M,G) with respect to
the W 2, n

2 -norm on C∞(M,Rm).
p.109
(ũν

α)−1φαβ ũ
ν
β = gα(uν

αh
ν
α)−1φαβ(uν

βh
ν
β)g−1

β = gαgαβg
−1
β = φαβ

p.120
This provides a subsequence (µj+1,i)i∈N ⊂ (νj+3,i)i∈N and gauge transforma-
tions w(j + 1, µj+1,i) ∈ G2,p(P |Mj+3

)
p.128
dA2

′(A1 −A2) η = . . . = −dA1
′(A2 −A1) η −

∫

M
〈 ∗[A ∧ ∗A] , η 〉

(

d∗
A(v∗Â−A)

)

α
= −

(

d∗
v∗Â

(A− v∗Â)
)

α
= . . .

p.129
Newton iteration analogous to [CGMS, Thm.B.1]
p.132
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α(t) = t · dAξ +

∞
∑

k=1

−(−t)k+1

(k+1)! adk
ξ (dAξ)

p.133

∣

∣∇
Â

(

exp(ξ)∗A−A− dAξ
)∣

∣

≤

∞
∑

k=1

Ck−1

(k+1)!

(

k|∇
Â
ξ| · |dAξ| + |ξ| · |∇

Â
dAξ|

)

≤ eC−1
C

(

|∇
Â
ξ|2 + |∇

Â
ξ| · |A− Â| · |ξ| + |ξ| · |∇2

Â
ξ| + |ξ| · |∇

Â
[A− Â, ξ]|

)

p.144 in (9.3)
∗FA|∂M = 0
p.146
Note that the assumptions on p in case k = 1 of both the above proposition and
corollary ensure p ≥ 2n

n+1

... then we can get to W 2,n (and thus to W 2,p if we started with p < n)
p.148
W k,q ↪→W k−1,p (in case q 6= p this is due to 1

q
= 2

p
− 1

n
≤ 1

p
+ 1

n
)

... with (k, p) replaced by (k − 1, q) and for s = p and p ≤ r <∞
p.152
Then corollary 9.6 (ii) with M ′ = M `

k and M ′′ = M `+1
k

p.156
Indeed, dAνβ converges in the Lp∗

-norm to dAβ since q ≥ p∗, and FAν converges
in the weak Lp-topology to FA.
p.167
In the local trivialization a gauge transformation u ∈ G(P ) is represented by
uα = φ̃α◦ū : Uα → G

p.174
‖FA‖W k−1,q ≤ ‖FÃ‖W k−1,q + C

(

‖α‖W k,q + ‖α‖2
W k,q

)

.

Here |dÃα| ≤ 2 |∇Ãα|
p.175
In a trivialization over U ⊂M ... with s ∈ C∞(U,G) and ξ ∈W k,p(U, g).
p.176
Thus in u∗iAi = (ui)

−1dui + (ui)
−1Aiui one immediately obtains the W k−1,p-

convergence of the first term and the Lp-convergence of the second term.
p.177
Indeed, for the first this is due to the Sobolev embedding W `,p ↪→W `−1,2p and
` ≤ k − 1 (using the convergence criterion in lemma B.7 (iv)).
p.180
Note the following subtlety of the definition of W k,p(M,E):

If M is a compact manifold with boundary, then sections in W k,p(M,E) can
be nonzero over ∂M . Sections in W k,p(M \ ∂M,E) however will be the limit
of smooth sections with support in M \ ∂M . For k = 0 the completions are the
same, but for k ≥ 1 any section in W k,p(M \∂M,E) necessarily extends to zero
over ∂M .
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p.181
Here Vi ⊂ R

n is a compact coordinate chart of M and R
m is isomorphic to the

fibres of E.
p.186
note that k −m ≥ n

kp
(k − mk

M
) since m ≤M ≤ k

p.188
Let u = s · exp(ξ) with s ∈ C∞(M,G) and ξ ∈ W k,p(M, g)
... for some constant Cξ ‖E(ξ)◦LY ξ‖p ≤ Cξ‖LY ξ‖p.
p.189
... for some constant Cξ ‖dξE(LZξ)◦LY ξ‖p ≤ Cξ‖LZξ‖2p‖LY ξ‖2p.
This proves that u−1du has finite W 1,p-norm.
Since G is compact E(u) is bounded in the operator norm
p.196
Finally, if k 6= l and both derivatives are included one checks

∣

∣

∣

∣

xlxkxi1 . . . xis

∂s+2m

∂xl∂xk∂xi1 . . . ∂xis

∣

∣

∣

∣

= . . . ≤ 2 · 2s+2(s+ 2)! ≤ 2n+1n! .

Before one has s ≤ n or s ≤ n+ 1 respectively, hence
... the criterion (C.1) is met with A = 2n+1n! .
p.199

∫

Rn\BK

ρt ≤ ε
2‖f‖p

p

The second term is estimated as follows:

. . . ≤ ‖f‖p
p

∫

Rn\BK

ρt(y) dny ≤ ε
2

p.208
W

k+1,p
∂ (M) =

{

G|∂M

∣

∣G ∈W k+1,p(M)
}

p.212
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