Erratum:Uhlenbeck Compactness

Katrin Wehrheim
wehrheim@math.princeton.edu

May 28, 2005

This note has some essential errata and a list of small corrections. Thanks to Malcolm Schreiber and Fabian Ziltener for meticulous reading!

Proof of theorem 2.2 :

The necessity of the condition $\int_{M} f=0$ for the existence of a solution of the Neumann problem follows as in the case $p=2$: If $u \in W^{k+2, p}(M)$ solves (NP) then by lemma N it also solves (wNP), which (tested with $\psi \equiv 1$) yields $\int_{M} f=0$.

In order to prove the sufficiency of that condition let $f \in W^{k, p}(M)$ be given such that $\int_{M} f=0$. Choose a sequence $\tilde{f}_{i} \in \mathcal{C}^{\infty}(M)$ that converges to f in the $W^{k, p}$-norm. Then also $\int_{M} \tilde{f}_{i}$ converges to $\int_{M} f=0$ since M has finite volume. Thus

$$
f_{i}:=\tilde{f}_{i}-\frac{1}{\operatorname{Vol}(M)} \int_{M} \tilde{f}_{i} \in \mathcal{C}^{\infty}(M)
$$

is a sequence of functions with vanishing mean value that still converges to f in the $W^{k, p}$-norm. Then the L^{2}-theorems 1.5 and 1.3 provide solutions $u_{i} \in$ $\mathcal{C}^{\infty}(M)$ of the Neumann problem (NP) with f replaced by f_{i}. We can choose the u_{i} to have vanishing mean value such that theorem 2.3 provides

$$
\left\|u_{i}-u_{j}\right\|_{W^{k+2, p}} \leq C\left\|\Delta u_{i}-\Delta u_{j}\right\|_{W^{k, p}}=C\left\|f_{i}-f_{j}\right\|_{W^{k, p}} \underset{i, j \rightarrow \infty}{\longrightarrow} 0
$$

Thus these u_{i} converge to some $u \in W^{k+2, p}(M)$. The limit solves $\Delta u=f$ due to the continuity of $\Delta: W^{k+2, p}(M) \rightarrow W^{k, p}(M)$ and theorem B. 10 implies that u also meets the Neumann boundary condition. Uniqueness follows from corollary 1.9.

Proof of theorem 2.1 :

Testing (wNP) with $\psi \equiv 1$ we see that $\int_{M} f=0$ holds automatically. So from the already established theorem 2.2 we obtain a solution $\tilde{u} \in W^{k+2, p}(M)$ of the Neumann problem (NP) for the given $f \in W^{k, p}(M)$.

Theorem 3.1 :

Let $f \in W^{k, p}(M)$ and $g \in W_{\partial}^{k+1, p}(M)$. Then there exists a solution $u \in$ $W^{k+2, p}(M)$ of (3.1) if and only if (3.2) holds. This solution is unique up to an additive constant.
Proof of theorem 3.1 :
The remark just before the theorem shows the necessity of (3.2) for the existence of a solution of (3.1).

For the sufficiency let functions $f \in W^{k, p}(M)$ and $g \in W_{\partial}^{k+1, p}(M)$ be given that satisfy (3.2). Choose some $G \in W^{k+1, p}(M)$ with $\left.G\right|_{\partial M}=g$ then by theorem 3.4 there exists $v \in W^{k+2, p}(M)$ that solves the boundary condition $\frac{\partial v}{\partial \nu}=\left.G\right|_{\partial M}=g$. Now we have by assumption

$$
\int_{M}(f-\Delta v)=\int_{M} f+\int_{\partial M} \frac{\partial v}{\partial \nu}=\int_{M} f+\int_{\partial M} g=0 .
$$

Thus theorem 2.2 asserts the existence of a solution $\tilde{u} \in W^{k+2, p}(M)$ of the Neumann problem (NP) with f replaced by $f-\Delta v$. The solution of the inhomogeneous problem (3.1) is then given by $u=\tilde{u}+v \in W^{k+2, p}(M)$. Uniqueness follows from corollary 1.9.

Theorem 3.1, its proof, theorem 5.3, and proof of theorem 5.5:
One should replace $W_{\delta}^{k, p}$ by $W_{\partial}^{k, p}$.
Proof of lemma 5.6: To see (i) choose coordinates near a point in $N \subset \partial M$ such that $\nu=\frac{\partial}{\partial x^{0}}$ and $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}$ are orthonormal tangential directions.
...
For (iv) let $F=\langle\alpha, \beta\rangle$, then calculate in local geodesic coordinates

$$
\begin{aligned}
\mathcal{L}_{X} F= & \sum_{i, j} X^{j} \partial_{j}\left(\alpha_{i} \beta_{i}\right) \\
= & \sum_{i, j}\left(X^{j} \partial_{j} \alpha_{i}+\alpha_{j} \partial_{i} X^{j}\right) \beta_{i}+\sum_{i, j} \alpha_{i}\left(X^{j} \partial_{j} \beta_{i}+\beta_{j} \partial_{i} X^{j}\right) \\
& \quad-\sum_{i, j} \alpha_{j}\left(\partial_{i} X^{j}+\partial_{j} X^{i}\right) \beta_{i} \\
= & \left\langle\mathcal{L}_{X} \alpha, \beta\right\rangle+\left\langle\alpha, \mathcal{L}_{X} \beta\right\rangle-\left\langle\iota_{Y_{\alpha}}\left(\mathcal{L}_{X} g\right), \beta\right\rangle
\end{aligned}
$$

Here we used the formulae $\mathcal{L}_{X} \alpha=X^{j} \partial_{j} \alpha_{i}+\alpha_{j} \partial_{i} X^{j}$ and $\left(\mathcal{L}_{X} g\right)_{i j}=\partial_{i} X^{j}+\partial_{j} X^{i}$ for the Lie derivatives in local geodesic coordinates, and $\left(Y_{\alpha}\right)^{j}=\alpha_{j}$ for the vector field Y_{α} that is dual to α.

Proposition 7.6:

... Then there exists a subsequence $\left(\nu_{i}\right)_{i \in \mathbb{N}}$ and a sequence of gauge transformations $u^{i} \in \mathcal{G}_{l o c}^{2, p}(P)$ such that

$$
\limsup _{i \rightarrow \infty}\left\|u^{i *} A^{\nu_{i}}\right\|_{W^{\ell, p}\left(M_{k}\right)}<\infty \quad \forall k \in \mathbb{N}, \ell \in I
$$

Proof of proposition 7.6 :

... Hence for every $\ell \in I$ and $k \in \mathbb{N}$

$$
\begin{aligned}
\limsup _{i \rightarrow \infty}\left\|u^{i *} A^{\nu_{i}}\right\|_{W^{\ell, p}\left(M_{k}\right)} & \leq \sup _{j>k}\left\|w\left(k, \mu_{j, j}\right)^{*} A^{\mu_{j, j}}\right\|_{W^{\ell, p}\left(M_{k}\right)} \\
& \leq \sup _{i \in \mathbb{N}}\left\|w\left(k, \mu_{k, i}\right)^{*} A^{\mu_{k, i}}\right\|_{W^{\ell, p}\left(M_{k}\right)}<\infty
\end{aligned}
$$

Proof of theorem 7.5 :

... Now proposition 7.6 with $I=\{1\}$ provides a subsequence $\left(\nu_{i}\right)_{i \in \mathbb{N}}$ and a sequence of gauge transformations $u^{i} \in \mathcal{G}_{l o c}^{2, p}(P)$ such that

$$
\limsup _{i \rightarrow \infty}\left\|u^{i *} A^{\nu_{i}}\right\|_{W^{1, p}\left(M_{k}\right)}<\infty \quad \forall k \in \mathbb{N} .
$$

...

In the induction for the local slice theorem 8.1 the estimates on $A_{1}-A_{0}$ are weaker than (8.13) and have to be established separately. The change of constants unfortunately affects the entire proof.

Proof of theorem 8.1 :

Fix a connection $\hat{A} \in \mathcal{A}^{1, p}(P)$ and a constant $c_{0}>0$ and consider a connection $A \in \mathcal{A}^{1, p}(P)$ that satisfies (8.1) for some $\delta>0$. Again the idea of the proof is to use Newtons iteration method to solve the boundary value problem for u. One defines connections A_{i} and gauge transformations $u_{i}=\exp \left(\xi_{1}\right) \ldots \exp \left(\xi_{i}\right)$ such that $u_{i}^{*} A=A_{i}$ and A_{i} converges to a connection A_{∞} that is in relative Coulomb gauge with respect to \hat{A}. Then one proves that in fact $A_{\infty}=u^{*} A$ for some gauge transformation u.

In the case of varying metrics in remark 8.2 one chooses the $W^{1, \infty}$-neighbourhood of the given metric g as in lemma 8.5 (iii). Moreover, choose this neighbourhood, that is $\varepsilon>0$, sufficiently small such that (8.6) holds with a uniform constant for all metrics g^{\prime} that satisfy $\left\|g-g^{\prime}\right\|_{W^{1, \infty}} \leq \varepsilon$. Then all constants in the following will be independent of the metric g^{\prime} that is used in the boundary value problem. The constants in Sobolev inequalities are also independent of g^{\prime} since they are defined with respect to g. That way the local slice theorem is proven with uniform constants for all metrics in the $W^{1, \infty}$-neighbourhood of g.

So we construct the sequences of gauge transformations $\exp \left(\xi_{i}\right) \in \mathcal{G}^{2, p}(P)$ and connections $A_{i} \in \mathcal{A}^{1, p}(P)$ by the following Newton iteration: $A_{0}:=A$ and $A_{i+1}:=\exp \left(\xi_{i}\right)^{*} A_{i}$, where $\xi_{i} \in W^{2, p}\left(M, \mathfrak{g}_{P}\right)$ is provided by lemma 8.5 (ii). It is the solution of

$$
\left\{\begin{aligned}
\mathrm{d}_{\hat{A}}^{*} \mathrm{~d}_{\hat{A}} \xi_{i} & =\mathrm{d}_{\hat{A}}^{*}\left(\hat{A}-A_{i}\right), \\
\left.* \mathrm{~d}_{\hat{A}} \xi_{i}\right|_{\partial M} & =\left.*\left(\hat{A}-A_{i}\right)\right|_{\partial M},
\end{aligned}\right.
$$

with

$$
\begin{align*}
& \left\|\xi_{i}\right\|_{W^{2, p}} \leq C_{1}\left(\left\|\mathrm{~d}_{\hat{A}}^{*}\left(A_{i}-\hat{A}\right)\right\|_{p}+\left\|\left.*\left(A_{i}-\hat{A}\right)\right|_{\partial M}\right\|_{W_{\partial}^{1, p}}\right), \\
& \left\|\xi_{i}\right\|_{W^{1, q}} \leq C_{1}\left\|A_{i}-\hat{A}\right\|_{q} . \tag{8.11}
\end{align*}
$$

We claim that for sufficiently small $\delta>0$ there exist constants $C_{0}, C_{I}, C_{I I}$ such that this sequence satisfies for all $i \in \mathbb{N}$

$$
\begin{align*}
&\left\|\mathrm{d}_{\hat{A}}^{*}\left(A_{i}-\hat{A}\right)\right\|_{p}+\left\|\left.*\left(A_{i}-\hat{A}\right)\right|_{\partial M}\right\|_{W_{\partial}^{1, p}} \leq 2^{-i} C_{I}\|A-\hat{A}\|_{q} \tag{8.12}\\
&\left\|A_{i}-A_{i-1}\right\|_{W^{1, p}} \leq 2^{-i} C_{I I}\|A-\hat{A}\|_{q} \quad \text { if } i \geq 2 \tag{8.13}
\end{align*}
$$

Let C_{3} be the constant from (8.6) and let C_{2} be the constant from lemma 8.6 (ii) for $c_{2}=C_{1} C_{3} c_{0}$. The constants C_{I} and $C_{I I}$ will be determined from $c_{0}, C_{1}, C_{2}, C_{3}$, and some Sobolev constants. The induction step for (8.12) and (8.13) will require a sufficiently small choice of $\delta>0$, depending on C_{I} and $C_{I I}$. This is the same procedure as for theorem 8.3 - we first fix C_{I} and $C_{I I}$ and then determine a suitable $\delta>0$, just that we do not give the more complicated formulae here.

Before starting the induction we note some estimates for $A_{1}-A_{0}$. We choose $\delta \leq 1$, then lemma 8.6 and (8.11), (8.6) provide a constant $C_{0} \geq 1$ such that
$\left\|A_{1}-A_{0}\right\|_{q} \leq C_{2}\left(1+\|A-\hat{A}\|_{q}\right)\left\|\xi_{0}\right\|_{W^{1, q}} \leq C_{1} C_{2}(1+\delta)\|A-\hat{A}\|_{q} \leq C_{0}\|A-\hat{A}\|_{q}$,

$$
\begin{aligned}
\left\|A_{1}-A_{0}\right\|_{W^{1, p}} & \leq C_{2}\left(1+\|A-\hat{A}\|_{W^{1, p}}\right)\left\|\xi_{0}\right\|_{W^{2, p}} \\
& \leq C_{1} C_{2}\left(1+c_{0}\right)\left(\left\|\mathrm{d}_{\hat{A}}^{*}\left(A_{j}-\hat{A}\right)\right\|_{p}+\left\|\left.*\left(A_{j}-\hat{A}\right)\right|_{\partial M}\right\|_{W_{\partial}^{1, p}}\right) \\
& \leq C_{1} C_{2} C_{3}\left(1+2 c_{0}\right)\|A-\hat{A}\|_{W^{1, p}} \leq C_{0}\|A-\hat{A}\|_{W^{1, p}}
\end{aligned}
$$

Now assume that (8.13) holds for all $i=2, \ldots, j$ with some $j \geq 2$, then we have

$$
\begin{align*}
\left\|A_{j}-\hat{A}\right\|_{W^{1, p}} & \leq\left\|A_{0}-\hat{A}\right\|_{W^{1, p}}+\left\|A_{1}-A_{0}\right\|_{W^{1, p}}+\sum_{i=2}^{j}\left\|A_{i}-A_{i-1}\right\|_{W^{1, p}} \\
& \leq\left(1+C_{0}\right)\|A-\hat{A}\|_{W^{1, p}}+\left(\sum_{i=2}^{j} 2^{-i}\right) C_{I}\|A-\hat{A}\|_{q} \\
& \leq 2 C_{0}\|A-\hat{A}\|_{W^{1, p}}+C_{I I}\|A-\hat{A}\|_{q} \\
& \leq 2 C_{0} c_{0}+C_{I I} \delta \leq 3 C_{0} c_{0} \tag{8.14}
\end{align*}
$$

Here we choose $\delta \leq c_{0} C_{0} C_{I I}^{-1}$. Moreover, (8.13) implies that with a Sobolev constant C and for $C_{I I} \geq 2 C^{-1} C_{0}$

$$
\begin{align*}
\left\|A_{j}-\hat{A}\right\|_{q} & \leq\left\|A_{0}-\hat{A}\right\|_{q}+\left\|A_{1}-A_{0}\right\|_{q}+\sum_{i=2}^{j} C\left\|A_{i}-A_{i-1}\right\|_{W^{1, p}} \\
& \leq\left(1+C_{0}\right)\|A-\hat{A}\|_{q}+\left(\sum_{i=2}^{j} 2^{-i}\right) C C_{I I}\|A-\hat{A}\|_{q} \\
& \leq\left(2 C_{0}+C C_{I I}\right)\|A-\hat{A}\|_{q} \leq 2 C C_{I I} \delta \tag{8.15}
\end{align*}
$$

Note that both (8.14) and (8.15) also hold for $j=0$ and $j=1$. That can be used as start of the induction. Then for the induction step suppose that (8.12) and (8.13) are true for all $i \leq j$ (so also (8.14) and (8.15) hold). In case $j=1$ this means that we can only use (8.12), (8.14), and (8.15); in case $j=0$ we will only use (8.14) and (8.15). Then we have to prove (8.12) and (8.13) for
$i=j+1$. Firstly, (8.11) provides the bound for lemma 8.6 (ii) that allows to use the estimates with the constant C_{2} fixed above : In case $j=0$

$$
\begin{aligned}
\left\|\xi_{0}\right\|_{W^{2, p}} & \leq C_{1}\left(\left\|\mathrm{~d}_{\hat{A}}^{*}\left(A_{0}-\hat{A}\right)\right\|_{p}+\left\|\left.*\left(A_{0}-\hat{A}\right)\right|_{\partial M}\right\|_{W_{\partial}^{1, p}}\right) \\
& \leq C_{1} C_{3}\|A-\hat{A}\|_{W^{1, p}} \\
& \leq C_{1} C_{3} c_{0}=: c_{2}
\end{aligned}
$$

and for the case $j \geq 1$ use (8.12) and choose $\delta \leq 2 C_{I}^{-1} C_{3} c_{0}$ such that

$$
\begin{aligned}
\left\|\xi_{j}\right\|_{W^{2, p}} & \leq C_{1}\left(\left\|\mathrm{~d}_{\hat{A}}^{*}\left(A_{j}-\hat{A}\right)\right\|_{p}+\left\|\left.*\left(A_{j}-\hat{A}\right)\right|_{\partial M}\right\|_{W_{\partial}^{1, p}}\right) \\
& \leq 2^{-j} C_{1} C_{I}\|A-\hat{A}\|_{q} \\
& \leq \frac{1}{2} C_{1} C_{I} \delta \leq c_{2} .
\end{aligned}
$$

Now since $\mathrm{d}_{\hat{A}}^{*} \hat{A}=\mathrm{d}_{\hat{A}}^{*}\left(\mathrm{~d}_{\hat{A}} \xi_{j}+A_{j}\right)$ and $\left.* \hat{A}\right|_{\partial M}=\left.*\left(\mathrm{~d}_{\hat{A}} \xi_{j}+A_{j}\right)\right|_{\partial M}$ we can rewrite

$$
\begin{align*}
\mathrm{d}_{\hat{A}}^{*}\left(A_{j+1}-\hat{A}\right) & =\mathrm{d}_{\hat{A}}^{*}\left(\exp \left(\xi_{j}\right)^{*} A_{j}-A_{j}-\mathrm{d}_{A_{j}} \xi_{j}\right)+\mathrm{d}_{\hat{A}}^{*}\left[A_{j}-\hat{A}, \xi_{j}\right] \tag{8.16}\\
\left.*\left(A_{j+1}-\hat{A}\right)\right|_{\partial M} & =\left.*\left(\exp \left(\xi_{j}\right)^{*} A_{j}-A_{j}-\mathrm{d}_{A_{j}} \xi_{j}\right)\right|_{\partial M}+\left[\left.*\left(A_{j}-\hat{A}\right)\right|_{\partial M}, \xi_{j}\right] .
\end{align*}
$$

The first terms in both right hand side expressions are estimated by lemma 8.6 (ii) and with the help of $(8.6),(8.11)$, and (8.14) :

$$
\begin{aligned}
& \left\|\mathrm{d}_{\hat{A}}^{*}\left(\exp \left(\xi_{j}\right)^{*} A_{j}-A_{j}-\mathrm{d}_{A_{j}} \xi_{j}\right)\right\|_{p}+\left\|\left.*\left(\exp \left(\xi_{j}\right)^{*} A_{j}-A_{j}-\mathrm{d}_{A_{j}} \xi_{j}\right)\right|_{\partial M}\right\|_{W_{\partial}^{1, p}} \\
& \leq C_{3}\left\|\exp \left(\xi_{j}\right)^{*} A_{j}-A_{j}-\mathrm{d}_{A_{j}} \xi_{j}\right\|_{W^{1, p}} \\
& \leq C_{2} C_{3}\left(1+\left\|A_{j}-\hat{A}\right\|_{W^{1, p}}\right)\left\|\xi_{j}\right\|_{W^{1, q}}\left\|\xi_{j}\right\|_{W^{2, p}} \\
& \leq C_{1}^{2} C_{2} C_{3}\left(1+3 C_{0} c_{0}\right)\left\|A_{j}-\hat{A}\right\|_{q}\left(\left\|\mathrm{~d}_{\hat{A}}^{*}\left(A_{j}-\hat{A}\right)\right\|_{p}+\left\|\left.*\left(A_{j}-\hat{A}\right)\right|_{\partial M}\right\|_{W_{\partial}^{1, p}}\right)
\end{aligned}
$$

Now consider the upper second term in (8.16). Firstly, from the local formula (A.9) for $\mathrm{d}_{\hat{A}}^{*}$ and the Jacobi identity one obtains

$$
\mathrm{d}_{\hat{A}}^{*}\left[A_{j}-\hat{A}, \xi_{j}\right]=\left[\mathrm{d}_{\hat{A}}^{*}\left(A_{j}-\hat{A}\right), \xi_{j}\right]-\left\langle A_{j}-\hat{A}, \mathrm{~d}_{\hat{A}} \xi_{j}\right\rangle .
$$

As in the proof of lemma 8.6 let $\frac{1}{r}=\frac{1}{p}-\frac{1}{q}$, then the Sobolev inequality for $W^{2, p} \hookrightarrow W^{1, r}$ holds. Thus from (8.11) and with a finite constant C arising from several Sobolev constants one obtains

$$
\begin{aligned}
\left\|\mathrm{d}_{\hat{A}}^{*}\left[A_{j}-\hat{A}, \xi_{j}\right]\right\|_{p} & \leq\left\|\mathrm{d}_{\hat{A}}^{*}\left(A_{j}-\hat{A}\right)\right\|_{p}\left\|\xi_{j}\right\|_{\infty}+\left\|A_{j}-\hat{A}\right\|_{q}\left\|\mathrm{~d}_{\hat{A}} \xi_{j}\right\|_{r} \\
& \leq C\left(\left\|\xi_{j}\right\|_{W^{1, q}}\left\|\mathrm{~d}_{\hat{A}}^{*}\left(A_{j}-\hat{A}\right)\right\|_{p}+\left\|A_{j}-\hat{A}\right\|_{q}\left\|\xi_{j}\right\|_{W^{2, p}}\right) \\
& \leq C C_{1}\left\|A_{j}-\hat{A}\right\|_{q}\left(\left\|\mathrm{~d}_{\hat{A}}^{*}\left(A_{j}-\hat{A}\right)\right\|_{p}+\left\|\left.*\left(A_{j}-\hat{A}\right)\right|_{\partial M}\right\|_{W_{\partial}^{1, p}}\right)
\end{aligned}
$$

For the lower second term in (8.16) use (8.11) and lemma B. 3 with $r=p$ and $s=q$ to obtain a constant C such that

$$
\begin{aligned}
\left\|\left[\left.*\left(A_{j}-\hat{A}\right)\right|_{\partial M}, \xi_{j}\right]\right\|_{W_{\partial}^{1, p}} & \leq C\left\|\left.*\left(A_{j}-\hat{A}\right)\right|_{\partial M}\right\|_{W_{\partial}^{1, p}}\left\|\xi_{j}\right\|_{W^{1, q}} \\
& \leq C C_{1}\left\|\left.*\left(A_{j}-\hat{A}\right)\right|_{\partial M}\right\|_{W_{\partial}^{1, p}}\left\|A_{j}-\hat{A}\right\|_{q}
\end{aligned}
$$

Now we have considered all terms in (8.16) and found a finite constant C_{4} depending on $c_{0}, C_{0}, C_{1}, C_{2}, C_{3}$, and some Sobolev constants C such that

$$
\begin{aligned}
\| \mathrm{d}_{\hat{A}}^{*}\left(A_{j+1}\right. & -\hat{A})\left.\left\|_{p}+\right\| *\left(A_{j+1}-\hat{A}\right)\right|_{\partial M} \|_{W_{\partial}^{1, p}} \\
& \leq C_{4}\left\|A_{j}-\hat{A}\right\|_{q}\left(\left\|\mathrm{~d}_{\hat{A}}^{*}\left(A_{j}-\hat{A}\right)\right\|_{p}+\left\|\left.*\left(A_{j}-\hat{A}\right)\right|_{\partial M}\right\|_{W_{\partial}^{1, p}}\right) \\
& \leq C_{4} \cdot 2 C C_{I} \delta \cdot 2^{-j} C_{I}\|A-\hat{A}\|_{q} \\
& \leq 2^{-(j+1)} C_{I}\|A-\hat{A}\|_{q}
\end{aligned}
$$

In the above estimates we used (8.12) for $i=j$ and (8.15), and we made the possibly even smaller choice $\delta \leq\left(4 C_{4} C C_{I I}\right)^{-1}$. Since we used (8.12) this only holds for $j \geq 1$; in case $j=0$ one has to use (8.6) and (8.1) to estimate

$$
\begin{aligned}
\| \mathrm{d}_{\hat{A}}^{*}\left(A_{1}-\right. & \hat{A})\left.\left\|_{p}+\right\| *\left(A_{1}-\hat{A}\right)\right|_{\partial M} \|_{W_{\partial}^{1, p}} \\
& \leq C_{4}\left\|A_{0}-\hat{A}\right\|_{q}\left(\left\|\mathrm{~d}_{\hat{A}}^{*}\left(A_{0}-\hat{A}\right)\right\|_{p}+\left\|\left.*\left(A_{0}-\hat{A}\right)\right|_{\partial M}\right\|_{W_{\partial}^{1, p}}\right) \\
& \leq C_{3} C_{4}\|A-\hat{A}\|_{q}\|A-\hat{A}\|_{W^{1, p}} \\
& \leq c_{0} C_{3} C_{4}\|A-\hat{A}\|_{q}
\end{aligned}
$$

In both cases, this proves the induction step for (8.12); where in the step for $j=0$ the constant C_{I} is fixed as $C_{I}=2 c_{0} C_{3} C_{4}$.

Furthermore, (8.13) is shown in case $i=j+1 \geq 2$ with the help of lemma 8.6 (ii), (8.14), (8.11), and again (8.12) for $i=j \geq 1$:

$$
\begin{aligned}
\left\|A_{j+1}-A_{j}\right\|_{W^{1, p}} & \leq C_{2}\left(1+\left\|A_{j}-\hat{A}\right\|_{W^{1, p}}\right)\left\|\xi_{j}\right\|_{W^{2, p}} \\
& \leq C_{1} C_{2}\left(1+3 C_{0} c_{0}\right)\left(\left\|\mathrm{d}_{\hat{A}}^{*}\left(A_{j}-\hat{A}\right)\right\|_{p}+\left\|\left.*\left(A_{j}-\hat{A}\right)\right|_{\partial M}\right\|_{W_{\partial}^{1, p}}\right) \\
& \leq 2^{-j} C_{I} C_{1} C_{2}\left(1+3 C_{0} c_{0}\right)\|A-\hat{A}\|_{q}
\end{aligned}
$$

This proves the induction step for (8.13) with $C_{I I}=\frac{1}{2} C_{I} C_{1} C_{2}\left(1+3 C_{0} c_{0}\right)$. So we have proved (8.12) and (8.13) by induction.

Now (8.13) shows that the A_{i} form a $W^{1, p_{-}}$-Cauchy sequence. Indeed, for all $k>j \geq 1$
$\left\|A_{k}-A_{j}\right\|_{W^{1, p}} \leq \sum_{i=j+1}^{k}\left\|A_{i}-A_{i-1}\right\|_{W^{1, p}} \leq \sum_{i=j+1}^{k} 2^{-i} C_{I}\|A-\hat{A}\|_{q} \leq 2^{-j} \delta C_{I}$.
Since $\mathcal{A}^{1, p}(P)$ is a Banach space this implies that the A_{i} converge in the $W^{1, p_{-}}$ norm to some $A_{\infty} \in \mathcal{A}^{1, p}(P)$. By continuity this limit connection also satisfies (8.14) and (8.15), hence one obtains a constant $C_{C G}=2 C_{0}+C C_{I I}$ (where C is the Sobolev constant for the embedding $W^{1, p} \hookrightarrow L^{q}$) such that

$$
\begin{aligned}
\left\|A_{\infty}-\hat{A}\right\|_{W^{1, p}} & \leq C_{C G}\|A-\hat{A}\|_{W^{1, p}} \\
\left\|A_{\infty}-\hat{A}\right\|_{q} & \leq C_{C G}\|A-\hat{A}\|_{q}
\end{aligned}
$$

From (8.12) one sees that

$$
\begin{aligned}
\mathrm{d}_{\hat{A}}^{*}\left(A_{\infty}-\hat{A}\right) & =\lim _{i \rightarrow \infty} \mathrm{~d}_{\hat{A}}^{*}\left(A_{i}-\hat{A}\right)=0 \\
\left.*\left(A_{\infty}-\hat{A}\right)\right|_{\partial M} & =\left.\lim _{i \rightarrow \infty} *\left(A_{i}-\hat{A}\right)\right|_{\partial M}
\end{aligned}=0 .
$$

So it remains to show that $A_{\infty}=u^{*} A$ for some $u \in \mathcal{G}^{2, p}(P)$. For that purpose consider the sequence $u_{i}=\exp \left(\xi_{1}\right) \ldots \exp \left(\xi_{i}\right)$. By lemma A. 5 it lies in $\mathcal{G}^{2, p}(P)$, and it satisfies $u_{i}^{*} A=A_{i}$. Now lemma A. 8 applies since A_{i} converges in the $W^{1, p}$-norm and A is uniformly $W^{1, p}$-bounded anyway. Thus there exists a subsequence of the u_{i} that converges in the \mathcal{C}^{0}-norm to some $u \in \mathcal{G}^{2, p}(P)$. For the same subsequence (again labelled by i) $u_{i}^{-1} \mathrm{~d} u_{i}$ converges to $u^{-1} \mathrm{~d} u$ in the $L^{2 p}$-norm. Now $u^{*} A=A_{\infty}$ since this is the unique $L^{2 p}$-limit of the sequence

$$
u_{i}^{-1} A u_{i}+u_{i}^{-1} \mathrm{~d} u_{i}=u_{i}^{*} A=A_{i} .
$$

Thus u is the required gauge transformation that puts A in relative Coulomb gauge.

Proof of theorem 8.3 :

... It remains to show that $A_{\infty}=u^{*} A$ for some $u \in \mathcal{G}^{1, r}(P)$. For that purpose consider the sequence $u_{i}=\exp \left(\xi_{1}\right) \ldots \exp \left(\xi_{i}\right)$. By lemma A. 5 it lies in $\mathcal{G}^{1, r}(P)$, and it moreover satisfies $u_{i}^{*} A=A_{i}$. Now lemma A. 8 applies (with $k=1$ and $p=r$) since the A_{i} converge in the L^{r}-norm and A is uniformly L^{r}-bounded anyway. Thus there exists a subsequence of the u_{i} that converges in the \mathcal{C}^{0}-norm to some $u \in \mathcal{G}^{1, r}(P)$. For the same subsequence (again labelled by i) $u_{i}^{-1} \mathrm{~d} u_{i}$ converges to $u^{-1} \mathrm{~d} u$ in the weak L^{r}-topology. Now we obtain $u^{*} A=A_{\infty}$ since this is the unique weak L^{r}-limit of the sequence $u_{i}^{-1} A u_{i}+u_{i}^{-1} \mathrm{~d} u_{i}=u_{i}^{*} A=A_{i}$. Thus u is the required gauge transformation that puts A in relative Coulomb gauge with respect to \hat{A}.

Proposition 9.8 and Lemma 9.9 : Let $p>\frac{n}{2}$....
Proof of theorem 10.3 :
... So proposition 7.6 with $I=\mathbb{N}$ provides a subsequence $\left(\nu_{i}\right)_{i \in \mathbb{N}}$ and a sequence of gauge transformations $u^{i} \in \mathcal{G}_{\text {loc }}^{2, p}(P)$ such that

$$
\limsup _{i \rightarrow \infty}\left\|u^{i *} \tilde{A}^{\nu_{i}}-\tilde{A}\right\|_{W^{\ell, p}\left(M_{k}\right)}<\infty \quad \forall k, \ell \in \mathbb{N}
$$

...

Lemma A. 8 : ...

(ii) There exists a subsequence of the u^{ν} that converges in the \mathcal{C}^{0}-topology to some $u^{\infty} \in \mathcal{G}^{k, p}(P)$ and for all trivializations $\left(u_{\alpha}^{\nu}\right)^{-1} \mathrm{~d} u_{\alpha}^{\nu} \rightarrow\left(u_{\alpha}^{\infty}\right)^{-1} \mathrm{~d} u_{\alpha}^{\infty}$ in the weak $W^{k-1, p}$-topology.

Corollary B. 9 : Let U be a compact Riemannian n-manifold and let G be a compact Lie group. Let $k \in \mathbb{N}$ and $1 \leq p<\infty$ be such that $k p>n$. Then for every sequence $\left(u_{i}\right)_{i \in \mathbb{N}}$ in $\mathcal{G}^{k, p}(U)$ with a uniform bound on $\left\|u_{i}^{-1} \mathrm{~d} u_{i}\right\|_{W^{k-1, p}}$ there exists a subsequence that converges in the \mathcal{C}^{0}-topology to a gauge transformation $u \in \mathcal{G}^{k, p}(U)$. Moreover, $u_{i}^{-1} \mathrm{~d} u_{i}$ converges to $u^{-1} \mathrm{~d} u$ in the weak $W^{k-1, p}$-topology.

Proof:

\ldots Thus $u=\Phi^{-1} \circ v$ is well defined, lies in $\mathcal{G}^{k, p}(M, G)$, and is the \mathcal{C}^{0}-limit of the u_{i}. At the same time, $u^{-1} \mathrm{~d} u$ is the weak $W^{k-1, p}$ limit of the $u_{i}^{-1} \mathrm{~d} u_{i}$.
\ldots (note that $\mathrm{d} \Phi$ is a bijection between $\mathrm{T} G$ and $\mathrm{T}(\Phi(G))$).

various small corrections

p. 17

We denote by $\langle u, \phi\rangle$ the pairing of a distribution $u \in \mathcal{D}(M)$ with $\phi \in \mathcal{C}^{\infty}(M)$. p. 34

In fact, theorem 2.3^{\prime} is only used in chapter 5 .
p. 39
$\left\|\mathcal{L}_{X} u\right\|_{W^{\ell+2, p}} \leq C\left(\left\|\Delta \mathcal{L}_{X} u\right\|_{W^{\ell, p}}+\left\|\mathcal{L}_{X} u\right\|_{W^{\ell+1, p}}\right)$
p. 41
$c:=(\operatorname{Vol} M)^{-1}\langle u, 1\rangle$
$\|u\|_{\left(W^{k, p^{*}}(M)\right)^{*}} \leq \ldots \leq C\|f\|_{\left(W^{k, p^{*}}(M)\right)^{*}}+C(\operatorname{Vol} M)^{-1}|\langle u, 1\rangle|$
p. 66
... $\quad \nabla$ is given by connection potentials $A_{\alpha} \in L^{r}\left(U_{\alpha}, \mathrm{T}^{*} U_{\alpha} \otimes \operatorname{End} V\right)$.
p. 69

For the Sobolev embedding one checks that $1-\frac{n}{p}>-\frac{n}{2 p}$ due to $p>\frac{n}{2}$.
p. 78 within the boundary value problems
$\mathrm{d}^{*} \alpha \in W^{k, p}(M)$
$\left.\alpha_{0}\right|_{\partial \mathbb{H}}=0$
p. 84 the estimates are meant for $\left|\int_{M} \alpha(X) \cdot \Delta \phi\right|$
p. 88

If X is perpendicular to the boundary, then the estimate holds for all $\phi \in$ $\mathcal{C}_{\delta}^{\infty}(M)$; if X is tangential, then it holds for $\phi \in \mathcal{C}_{\nu}^{\infty}(M)$.
p. 96
... the Sobolev inequality for $W^{1, p} \hookrightarrow L^{2 p}$
p. 97
$\left\|F_{A_{i}}\right\|_{p} \leq C\left(\left\|A_{i}\right\|_{W^{1, p}}+\left\|A_{i}\right\|_{W^{1, p}}^{2}\right)$
p. 101
... the perturbation S also is a linear operator from $W_{m}^{2, p}(B, \mathfrak{g})$ to \mathcal{Z}
... we can use a property (A.6) of the norm on \mathfrak{g}
p. 105

Now $W^{2, \frac{n}{2}}(M, G)$ can be defined as the closure of $\mathcal{C}^{\infty}(M, G)$ with respect to the $W^{2, \frac{n}{2}}$-norm on $\mathcal{C}^{\infty}\left(M, \mathbb{R}^{m}\right)$.
p. 109
$\left(\tilde{u}_{\alpha}^{\nu}\right)^{-1} \phi_{\alpha \beta} \tilde{u}_{\beta}^{\nu}=g_{\alpha}\left(u_{\alpha}^{\nu} h_{\alpha}^{\nu}\right)^{-1} \phi_{\alpha \beta}\left(u_{\beta}^{\nu} h_{\beta}^{\nu}\right) g_{\beta}^{-1}=g_{\alpha} g_{\alpha \beta} g_{\beta}^{-1}=\phi_{\alpha \beta}$
p. 120

This provides a subsequence $\left(\mu_{j+1, i}\right)_{i \in \mathbb{N}} \subset\left(\nu_{j+3, i}\right)_{i \in \mathbb{N}}$ and gauge transformations $w\left(j+1, \mu_{j+1, i}\right) \in \mathcal{G}^{2, p}\left(\left.P\right|_{M_{j+3}}\right)$
p. 128
$\mathrm{d}_{A^{2}}{ }^{\prime}\left(A^{1}-A^{2}\right) \eta=\ldots=-\mathrm{d}_{A^{1}}{ }^{\prime}\left(A^{2}-A^{1}\right) \eta-\int_{M}\langle *[A \wedge * A], \eta\rangle$
$\left(\mathrm{d}_{A}^{*}\left(v^{*} \hat{A}-A\right)\right)_{\alpha}=-\left(\mathrm{d}_{v^{*} \hat{A}}^{*}\left(A-v^{*} \hat{A}\right)\right)_{\alpha}=\ldots$
p. 129

Newton iteration analogous to [CGMS, Thm.B.1]
p. 132
$\alpha(t)=t \cdot \mathrm{~d}_{A} \xi+\sum_{k=1}^{\infty} \frac{-(-t)^{k+1}}{(k+1)!} \operatorname{ad}_{\xi}^{k}\left(\mathrm{~d}_{A} \xi\right)$
p. 133

$$
\begin{aligned}
& \left|\nabla_{\hat{A}}\left(\exp (\xi)^{*} A-A-\mathrm{d}_{A} \xi\right)\right| \\
& \leq \sum_{k=1}^{\infty} \frac{C^{k-1}}{(k+1)!}\left(k\left|\nabla_{\hat{A}} \xi\right| \cdot\left|\mathrm{d}_{A} \xi\right|+|\xi| \cdot\left|\nabla_{\hat{A}} \mathrm{~d}_{A} \xi\right|\right) \\
& \leq \frac{e^{C}-1}{C}\left(\left|\nabla_{\hat{A}} \xi\right|^{2}+\left|\nabla_{\hat{A}} \xi\right| \cdot|A-\hat{A}| \cdot|\xi|+|\xi| \cdot\left|\nabla_{\hat{A}}^{2} \xi\right|+|\xi| \cdot\left|\nabla_{\hat{A}}[A-\hat{A}, \xi]\right|\right)
\end{aligned}
$$

p. 144 in (9.3)
$\left.* F_{A}\right|_{\partial M}=0$
p. 146

Note that the assumptions on p in case $k=1$ of both the above proposition and corollary ensure $p \geq \frac{2 n}{n+1}$
\ldots then we can get to $W^{2, n}$ (and thus to $W^{2, p}$ if we started with $p<n$)
p. 148
$W^{k, q} \hookrightarrow W^{k-1, p}$ (in case $q \neq p$ this is due to $\frac{1}{q}=\frac{2}{p}-\frac{1}{n} \leq \frac{1}{p}+\frac{1}{n}$)
\ldots with (k, p) replaced by $(k-1, q)$ and for $s=p$ and $p \leq r<\infty$
p. 152

Then corollary 9.6 (ii) with $M^{\prime}=M_{k}^{\ell}$ and $M^{\prime \prime}=M_{k}^{\ell+1}$
p. 156

Indeed, $\mathrm{d}_{A^{\nu}} \beta$ converges in the $L^{p^{*}}$-norm to $\mathrm{d}_{A} \beta$ since $q \geq p^{*}$, and $F_{A^{\nu}}$ converges in the weak L^{p}-topology to F_{A}.
p. 167

In the local trivialization a gauge transformation $u \in \mathcal{G}(P)$ is represented by $u_{\alpha}=\tilde{\phi}_{\alpha} \circ \bar{u}: U_{\alpha} \rightarrow G$
p. 174
$\left\|F_{A}\right\|_{W^{k-1, q}} \leq\left\|F_{\tilde{A}}\right\|_{W^{k-1, q}}+C\left(\|\alpha\|_{W^{k, q}}+\|\alpha\|_{W^{k, q}}^{2}\right)$.
Here $\left|\mathrm{d}_{\tilde{A}} \alpha\right| \leq 2\left|\nabla_{\tilde{A}} \alpha\right|$
p. 175

In a trivialization over $U \subset M \ldots$ with $s \in \mathcal{C}^{\infty}(U, G)$ and $\xi \in W^{k, p}(U, \mathfrak{g})$.
p. 176

Thus in $u_{i}^{*} A_{i}=\left(u_{i}\right)^{-1} \mathrm{~d} u_{i}+\left(u_{i}\right)^{-1} A_{i} u_{i}$ one immediately obtains the $W^{k-1, p_{-}}$ convergence of the first term and the L^{p}-convergence of the second term.
p. 177

Indeed, for the first this is due to the Sobolev embedding $W^{\ell, p} \hookrightarrow W^{\ell-1,2 p}$ and $\ell \leq k-1$ (using the convergence criterion in lemma B. 7 (iv)).
p. 180

Note the following subtlety of the definition of $W^{k, p}(M, E)$:
If M is a compact manifold with boundary, then sections in $W^{k, p}(M, E)$ can be nonzero over ∂M. Sections in $W^{k, p}(M \backslash \partial M, E)$ however will be the limit of smooth sections with support in $M \backslash \partial M$. For $k=0$ the completions are the same, but for $k \geq 1$ any section in $W^{k, p}(M \backslash \partial M, E)$ necessarily extends to zero over ∂M.

p. 181

Here $V_{i} \subset \mathbb{R}^{n}$ is a compact coordinate chart of M and \mathbb{R}^{m} is isomorphic to the fibres of E.
p. 186
note that $k-m \geq \frac{n}{k p}\left(k-\frac{m k}{M}\right)$ since $m \leq M \leq k$
p. 188

Let $u=s \cdot \exp (\xi)$ with $s \in \mathcal{C}^{\infty}(M, G)$ and $\xi \in W^{k, p}(M, \mathfrak{g})$
\ldots for some constant $C_{\xi}\left\|E(\xi){ }_{\circ} \mathcal{L}_{Y} \xi\right\|_{p} \leq C_{\xi}\left\|\mathcal{L}_{Y} \xi\right\|_{p}$.
p. 189
... for some constant $C_{\xi}\left\|\mathrm{d}_{\xi} E\left(\mathcal{L}_{Z} \xi\right) \circ \mathcal{L}_{Y} \xi\right\|_{p} \leq C_{\xi}\left\|\mathcal{L}_{Z} \xi\right\|_{2 p}\left\|\mathcal{L}_{Y} \xi\right\|_{2 p}$.
This proves that $u^{-1} \mathrm{~d} u$ has finite $W^{1, p}$-norm.
Since G is compact $E(u)$ is bounded in the operator norm p. 196

Finally, if $k \neq l$ and both derivatives are included one checks

$$
\left|x_{l} x_{k} x_{i_{1}} \ldots x_{i_{s}} \frac{\partial^{s+2} m}{\partial x_{l} \partial x_{k} \partial x_{i_{1}} \ldots \partial x_{i_{s}}}\right|=\ldots \leq 2 \cdot 2^{s+2}(s+2)!\leq 2^{n+1} n!
$$

Before one has $s \leq n$ or $s \leq n+1$ respectively, hence
... the criterion (C.1) is met with $A=2^{n+1} n!$.
p. 199

$$
\int_{\mathbb{R}^{n} \backslash B_{K}} \rho_{t} \leq \frac{\varepsilon}{2\|f\|_{p}^{p}}
$$

The second term is estimated as follows:

$$
\ldots \leq\|f\|_{p}^{p} \int_{\mathbb{R}^{n} \backslash B_{K}} \rho_{t}(y) \mathrm{d}^{n} y \quad \leq \frac{\varepsilon}{2}
$$

p. 208
$W_{\partial}^{k+1, p}(M)=\left\{\left.G\right|_{\partial M} \mid G \in W^{k+1, p}(M)\right\}$

p. 212

The reference [W] split into
[W1] K.Wehrheim, Banach space valued Cauchy-Riemann equations with totally real boundary conditions, Comm. Contemp. Math. 6 (2004), no. 4, 601-635.
[W2]K.Wehrheim, Anti-self-dual instantons with Lagrangian boundary conditions I: Elliptic theory, Comm. Math. Phys. 254 (2005), no. 1, 45-89.

