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1. INTRODUCTION
The method of pseudoholomorphic curves initiated by Gromov [33] has now become the
most basic tool in studying the global structure of symplectic manifolds. Its important
applications include estimates of the number of fixed points of an exact symplectic diffeo-
morphism and invariants of symplectic manifolds by counting number of pseudoholomor-
phic curves.

The application of the method of pseudoholomorphic curves to study the number of
fixed points of an exact symplectic diffefomorphism is initiated by Floer [15-20] and leads
a homology theory of semi-infinite dimension, which is now called the Floer homology. One
of the targets of Floer’s work was to prove a celebrated conjecture by Arnold [1] which
states that the number of fixed points of an exact symplectic difftomorphism on M is as
many as the number of critical points of functions on M. After Floer, Hofer and Salamon
[35], and the second named author [ 52] generalized it and established Arnold conjecture in
various cases. One of the main results of this paper proves a version of Arnold conjecture on
a general symplectic manifold.

An invariant of symplectic manifold by counting number of pseudoholomorphic
curves is related to topological sigma models in mathematical physics and is studied
independently from that point of view. Especially Witten in [73] (see also [70])
discussed it. This invariant now is called Gromov-Witten invariant. After Mirror symmetry
conjecture was discovered by physicists [8], a number of efforts have been done to give
a mathematically rigorous definition of this invariant in full geometry. Let us quote the
result by Ruan [587] and Ruan-Tian [60, 61 which establish it under additional assump-
tions. Another main result of this paper establish it in full generality (over rational
coefficients).

For both (and most of other) applications of pseudoholomorphic curves in symplectic
geometry, one had to assume that the symplectic manifold is weakly monotone (or
semi-positive). The reason one had to do so is related to the compactness and transversality
of the moduli space of pseudoholomorphic curves. Gromov and later McDulff established
various results on compactness and transversality. Their results are basic for various
applications. However, in the case of a general symplectic manifold, one needs additional
results to establish relevant compactness and transversality theorems of the moduli space of
pseudoholomorphic curves. The difficulty, which is called negative multiple cover problem,
is in fact, closely related to the problem of stability in algebraic geometry and was also
studied extensively there.

The main purpose of this paper is to show a way to overcome the problem of negative
multiple cover in symplectic geometry. Our work is influenced by Kontsevich’s paper [38],
where Kontsevich (quoting Deligne’s letter to Esnault) proposed to use the notion of stack
to study Gromov—Witten invariant. Especially his idea to regard obstruction bundle as
“super structure sheaf” is basic to our approach. In fact the starting point of this work is the
author’s effort to understand [ 387]. We succeed to fill most of what Kontsevich mentioned as
“certain gaps in foundation” in [38] and give a rigorous mathematical basis to this beautiful
paper. Kontsevich in [38] also suggested a possibility to use his idea to prove Arnold
conjecture.

We now state our results. Let (M, w) be a 2n-dimensional symplectic manifold. Namely
we assume that dow =0 and " vanishes nowhere. We assume that M is compact. We
consider a smooth function H: M x S' - R. We put H,(x) = H(x, t), te S*. Let Xy, be the
Hamilton vector field associated to it, which is defined by

i(Xy)o = dH,.
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We consider a one-parameter group of diffecomorphisms ¢ : M x R — M such that
d
E d)(xa t) = Xth)(xs t)

d(x, 0) = x.

We put ¢(x) = ¢(x, 1). ¢ is called an exact symplectic diffeomorphism. We put

Fix(¢) = {x]p(x) = x}.

We say that x, € Fix(¢) is nondegenerate if 1 is not an eigenvalue of D¢, .

TueoREM 1.1. Suppose that every element of Fix(¢) is nondegenerate. T hen the number of
elements of Fix{(¢), is not smaller than

2n

Y rank H,(M; Q).
k=0

Remark 1.2. Theorem 1.1 was proved by various mathematicians under various addi-
tional assumptions. Especially, it was proved in the following cases:

M = T?" (Torus), Conley-Zehnder [9],

M = X, (Riemann surface of higher genus), Floer [15] and Sikorav [66],
M is monotone, Floer [19],

M is semi-positive, Hofer and Salamon [35] and Ono [52].

The estimate in terms of the ranks of the torsion parts of the homology is also obtained in
the cases quoted above. However, our method does not work to prove it in the general case.

We next turn to the Gromov-Witten invariant. We choose an almost complex structure
J on M which is compatible with the symplectic structure in the following sense.

w(Jv, Jw) = (v, w)
(v, Jv) > 0 for every nonzero v.

It follows that g,(v, w) = w(v, Jw) is a Riemannian metric.

Let g, m be nonnegative integers. We consider an oriented compact 2 manifold X, of
genus g, and m points z =(zy, ..., z,) on it, such that z; # z; for i # j. Let Diff{Z, z) be the
group of all diffeomorphisms u of M such that u(z;) = z;. Let f € H,(M; Z) be a homology
class.

We denote by ,%Ay,m(M , p) the set of all pairs (J, i) such that Jy is a complex structure of
2, and h:X — M is a pseudoholomorphic map. Namely it satisfies

Dh-Js =J-Dh

We also assume h,[X] = p. The group Diff(X,z) acts on .4, (M, p) by u(Jy, h) =
(u*Js, hou™1). Let .4, (M, p) be the quotient space.

Let .4, ,, be the moduli space of all complex structures on (Z, z). In other words, .%, ,, is
a quotient of the set of all Jy (complex structure on X,) by the action of Diff(Z, z). There is
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a natural projection 7:.4, (M, ) = My m, n[Jx, h] = [J:]. We also consider an evalu-
ation map ev: .4, (M, f) - M™ defined by

ev(Js, h) = (h(zy), ..., h(z,)).

Let C.4,,,, be the Deligne-Mumford compactification [11] of .#, ,. (We assume
3g + m = 3. Otherwise .4, ,, is empty. The case g = 1, m = 0 is exceptional also. Namely
dim¢ .#; o =1 and is different from the usual dimension, i.e. dimg .#, , = 3g — 3 + m.)

We remark that a symplectic structure determines a homotopy class of compatible
almost complex structure hence the Chern classes of its tangent bundle is well defined,
which we denote by c;.

The next theorem looks rather complicated. Roughly speaking it means that the
fundamental class over Q of our moduli space .%, ,,(M, ) is well defined. The precise
meaning of it will be clear from the discussion of later sections.

THeOREM 1.3. Suppose 3g + m = 3. There exists a perturbation and compactification of
M,y (M, B), which we denote by P C. M, (M, p). The map nwx ev: My, (M, p) = My < M™
extends to a map PCMy M, B)— CM ,,x M™. This space has a fundamental class
[2C. iy, (M, B)] over Q in the following sense.

PC My, (M, B) is a simplicial complex of dimension 2m + 2pc, + 2(3 —n)(g —1). The
map PClly, (M, p) = Clly ,, x M™ is smooth on each simplex. We regard top dimensional
simplexes together with the restriction of the map PC M, (M, p) = C.M,, , x M™ as a singular
simplex. We can define a coefficient to each of such singular simplex and define a singular
chain on C.ly,x M™. It is a singular cycle and gives an element [PC.M, (M, p)] e
Hmt2pe,+2-nyig-1) (Colly, y x M™; Q), which depends only on the symplectic manifold M,
m, g and B. Moreover, for every piecewise smooth cycle C in C.ly ,x M™, we may take
PC My, (M, B) so that the restriction of PC My, (M, ) = C.Mly, ., x M™ to each simplex is
transversal to C.

We remark that the class [2C.#,, ,(M, f)] is not defined as an element of homology
group of C.#,, ,(M, B), but we define its image in H (C.#, , x M™; Q).
We mention the following consequence.

CoroLLarY 1.4, There exists a Gromov-Witten class satisfying all the axioms in
Kontsevich-Manin [39] except possibly Motivic one.

The precise statement of Corollary 1.4 will be given in Section 23 as Theorems 23.1.1-23.1.7.

Remark 1.5. Theorem 1.3 and Corollary 1.4 are proved by Ruan-Tian in the case when
M is semi-positive, g =0, m >3 in [60] and M is semi-positive, 2g + m > 3 in [61].
Corollary 1.4 is proved by Kontsevich-Manin [39] and Behrend-Manin [7] in the case
when M is algebraic and convex. Ruan-Tian proved their result over Z.

Our method also works in the case when 3¢ + m < 3. But we need to change the
statement since C.#,, ,, is empty in that case. See Section 17 for the statement in that case.

Let us sketch the main idea of the proof of Theorems 1.1 and 1.3. The basic idea of them
are the same. The difficulty we need to overcome is “negative multiple cover problem”,
which we review briefly here.

This problem is on the transversality and compactness of the moduli space of
pseudoholomorphic curves. Compactness in this case is a consequence of “transversality at
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infinity” and dimension counting. So the problem is the transversality. That is the problem
whether the actual (geometric) dimension of the moduli space coincides with the index of the
linearized operator.

One typical case where it appears is as follows. Let us consider a homology class
p =P+ NP,eH,y(M,Z). We assume that

3-”<C1(M)ﬁ2<0. (16)

(Here we remark that semi-positivity is the condition which asserts that there are no
pseudoholomorphic curve satisfying (1.6).) Using Riemann-Roch’s theorem we find that the
virtual dimension of the moduli space .#, o(M, f,) is given by

vir dimg 4 o(M, B2) = 2¢1 5 + 2(n — 3) >0

Hence, we cannot prove, by dimension counting, that this space is empty. On the other
hand, we consider the virtual dimensional of the moduli space .4, o(M, Nf,) and find that

vir dimg ,%Qo(M, Nﬁz) = ZNClﬁz + 2(1’1 — 3) <0

if N is large. However, if he .#, o(M, ;) and if ¢y:CP! - CP! is a holomorphic map
of degree N, then heqoye . #y o(M,Np,). Hence, if .4y o(M,p,) is nonempty, then
Mo, o(M, N f,) is nonempty. (Moreover dim .#, o(M, f,) < dim %, (M, NJ,) if we define
the dimension in an appropriate way, say the topological dimension.)

Thus we have virdim.#, ((M,Np,)# dim .#, (M, Np,). Namely the space
My, o(M, Nf,) cannot be transversal for any choice of compatible almost complex structure.

A similar trouble will be induced to the compactification C.#, o(M, ) of the moduli
space .y o(M, ). Namely we consider a pair (hy, hy° @y) such that hy € 4y (M, B1),
hy ey (M, B,), and that hy(zy) = h,@y(zy), where zy, z; are marked points. This element
is regarded as a stable map of genus 0 which we define in Section 7 and is an element of
a compactification C.#, o(M, p). When we fix @y, the space of such pairs (hy, h,° @y) is
a codimension 2n submanifold of .#, (M, 1) x 4y (M, ). (The codimension = 2n is the
number of conditions, hy(zg) = hypy(z1) we assumed.) We find that:

virdim( 4y, o(M, 1) X Mo, o(M, B2)) =211 + 2(n — 2) + 2¢4f5 + 2(n — 2).
Hence the dimension of the space of such pairs (hy, h; © @y) may be as large as
2¢1p1 + 2¢c1p5 + 2(n — 4). (1.8)

(In fact we need to take into account the moduli space of ¢,. Hence the dimension may be
larger than (1.8).)
On the other hand, the virtual dimension of the moduli space .#, o(M, f5) is

vir dimg .%o o(M, B) = 2¢1 1 + 2Ny + 2(n — 3). (1.9)

In case when N is large, the right-hand side of (1.9) is smaller than (1.8). Namely the
“boundary” of C.#, o(M, f) is of larger dimension than .4, o(M, p) itself. This causes
trouble to define a fundamental class of C.4, o(M, p).

The map h;° @y does not satisfy the condition “somewhere injective” established by
McDuff[457]. McDuff proved that, for generic almost structure, the virtual dimension of the

subset of the moduli space .4, ,(M, f) which consists of somewhere injective elements,
coincides with its actual (geometric) dimension. The above argument shows that one needs
to consider also maps which is not somewhere injective, to study the moduli space
Mo, o(M, p) in case M is not semi-positive.

For higher genus, there is also a similar problem. As a typical example, let us consider
Ni, 9, 9is 9, Bi, B such that Nif; + Nyf, =pf, gi =1 + Ni(g; —1). We remark that there
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exists a holomorphic map @y : X, — X, of degree N; between Riemann surfaces of genus
gi»g; if and only if g; > 14 Ni(g; —1). We consider a pair (hy° @y, hy°@y,) Where
hy ety (M, B1), hy € My, (M, B3). It hi(z9) = hy(z4) then such a pair (hy° @y,, hy°@y,)
may be regarded as an element of C.#,; ., o(M, B). The virtual dimension of .% .., o(M, f)is

vir dim Ay 1 oM, B) = 2Bcy + 23 —n){gy + g2 —1). (1.10)

On the other hand, if we fix @y:X, - X, the set of pairs (i ° @y,, h;° @y,) such that

hy(zo) = hy(zo) is of codimension 2n in C.4, (M, B)x C.4,, 1(M, B,). The dimension of
it is

2p1¢1 + 23 — n)(gy — 1) + 2f¢1 + 2(3 — n)(g, — 1) —2n. (L.11)

Incaseg; 1+ Ni(g; —1)and n > 3, we can easily find examples such that (1.11) is much
larger than (1.10) (and 2f,¢; +2(3 —n)(1 — g1) = 0, 2b,¢1 + 2(3 — n)(1 — g,) = 0))

Thus the ‘boundary’ of C.# 14, o(M, p) is of larger dimension than .4, ., (M, p) itself,
in some cases. This problem (in the higher genus case) was handled by Ruan and Tian [61],
under additional assumptions. Their method is to use inhomogeneous perturbation, which
was first introduced by Gromov [33].

However, the method to use inhomogeneous perturbation alone is not enough to settle
negative multiple cover problem in general. Our method in this paper may be regarded as
using inhomogeneous and multivalued perturbation (though we define our perturbation in
more abstract way). Example 7.12 shows that in general the order counted with sign of
My, (M, B) (in the case its virtual dimension is 0) is a rational number. Hence, we need
multivalued perturbation to achieve transversality. It works to settle both problems (over
rational coefficient).

Let us now go back to the sketch of the ideas of the proofs of Theorems 1.1 and 1.3.

For each point ¢ in our moduli space C.%,, ,(M, ), we find its neighborhood diffeo-
morphic to

STHO/T,

where f: R* - R” and T, is a finite group acting on R, R” such that fis I'y-invariant. This is

a general principle which applies to a moduli space of solutions of an elliptic partial
differential equation with automorphism groups. Kuranishi [40] first applied this method
to the study of deformation theory of complex structures. This map f is, in general, called
the Kuranishi map.

This description is used extensively in Gauge theory (anti-self-dual equation) by
Donaldson and Taubes.

One idea to achieve the transversality is then to perturb the map fso that it is transversal
to 0. This was the way taken by Donaldson in his paper [12] to study anti-self-dual
equation. Ruan used it in [56] for pseudoholomorphic curves. (However, the description
there is rather confusing, since the problem arising from the presence of I'y, is not discussed
carefully.)

However, in our case we cannot do it because there is no I'y-invariant perturbation
of f which is transversal to 0 in general.

At this point we need to leave the general theory and use properties of our equation.

First by using the idea of Kontsevich to introduce stable maps, we may assume that I is
a finite group. In our case, I is the group of automorphisms of the pair (Z, /) representing
o€ M, (M, B). Kontsevich’s definition of stable map is designed so that I’y is always finite.

Second we work out Kuranishi theory in the case of pseudoholomorphic curves and
describe our moduli space as f ~1(0)/T,, where f: R¥ - R’. One important point is that the
difference k — 7 is constant. It means that the virtual dimension of our moduli spaceis k — #
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and is constant. This is a consequence of the fact that the linearization of the pseudo-
holomorphic curve equation gives a two-step elliptic complex (the Dolbeault complex on
the curve tensored with the pull back of the tangent bundle of the target space).

We regard such a description as charts and call such a structure the Kuranishi structure.

Now we use the fact that I§ is finite to find a multivalued perturbaton of f such that
each branch is transversal to 0. More precisely we construct and use a multisection of an
orbibundle.

The zero set of a multivalued function (or more precisely a multisection) gives a cycle
over @ hence we prove Theorem 1.3. (In fact we need to perform those constructions at
infinity as well.)

The proof of Theorem 1.1 is a combination of arguments in [19, 35, 52] and the
discussion above on the compactification of the moduli space of pseudoholomorphic
curves.

The organization of this paper is as follows.

In Chapter 1, we review basic facts on orbifolds and then define Kuranishi structures,
multisections and prove a general transversality theorem for multisections. The contents of
this chapter is elementary. However, we give rather detailed description because we do not
find an appropriate reference and because such a method may look strange to some workers
of symplectic geometry. (Using orbifolds to study the moduli space of curves was initiated
by Mumford [50] and is familiar to algebraic geometers.)

In Chapter 2, we define the moduli space of stable maps and its topology. We
include discussions on Deligne-Mumford compactification of the moduli space of
curves in this chapter, since we use it frequently and since there seems to be no
reference describing it in the way we need. We also prove the compactness of the moduli
space of stable maps. It seems that this fact is, in principle, known to Gromov already and
there are papers [ 53, 54, 74] published on this topic. But we give a proof of it, since we do
not find any reference discussing the stability and unstability (which are quite essential here)
enough carefully. Especially it seems that there is no reference which gives a proof that
moduli space of the stable maps is Hausdorff. Kontsevich [38] seems to be the first person
who observed that the notion of stable maps allows to obtain a moduli space which is
Hausdorft.

In Chapter 3, we construct Kuranishi structure on the moduli space of stable maps. The
main part of the construction is Taubes’ type gluing argument with obstruction bundles.
One needs some more arguments to glue Kuranishi maps. Also the definition and the
construction of the orientation needs some more arguments including the definition of
K-group over Kuranishi structure. The analytic part of the construction is a minor
modification of the case of weakly monotone symplectic manifolds. We here follow the
approach by McDuff-Salamon [47] for analysis.

In Chapter 4, we use those machineries and prove Theorems 1.1 and 1.3.

CHAPTER 1. ORBIFOLD, MULTISECTION AND KURANISHI STRUCTURE

2. ORBIFOLD AND ORBIBUNDLE

The definition of orbifold (or -manifold) and orbibundle is due to Satake [63] and is
now standard. However, to fix our notation, we recall their definitions here. The experi-
enced reader may skip this section and come back only to check our notations when
necessary.
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Definition 2.1. A local model of an n-dimensional orbifold is a pair ( ,I') where I is
a finite group which has a linear representation of R”, and  is a I'-invariant open
neighborhood of 0 € R". We assume that the action of I on  is effective.

Let ( ,T) be a local model of an n-dimensional orbifold. We put U = /T and let
n: — U be the projection. For each g € U, we obtain a local model of an n-dimensional
orbifold ( ,, I';) as follows. We take ge such that n(g) = g. We put

I,=1{9eTllgq =4}

We take a sufficiently small I',-invariant neighborhood , of §. We may regard the pair
( 4 I'y) as alocal model of an n-dimensional orbifold. There is a map n,: ,— U such that
Tg(gx) = my(x).

The germ of the triple ( 4, I';, 7,) is well defined in the following sense. If ( , I';, ) is
another such triple then there exists a I'j-invariant neighborhood , of n; '(g), a T}
invariant neighborhood , of 7, (g), an isomorphism ¢ : T, » I, , and a diffeomorphism
Q: _q - _q’ such that ¢ is y-equivariant and m;° ¢ = m,.

We call ( ,, Iy, n,) an induced chart.

q

Definition 2.2. Let X be a paracompact Hausdorff space. An n-dimensional orbifold
structure on X is an open covering X = |, U;, local models ( ;, I';) of an n-dimensional
orbifold for each i, and homeomorphisms

o JTi—= U

with the following properties. Let g € U;nU;. We have induced charts ( ,;, I’ ;, 7, ;) and
( 4.5» Tq.j» mq. ;) respectively. Here, m,;: ,:— /I etc. Then, replacing ,; and  ; by
smaller ones if necessary there exists an isomorphism y; ; ,:I, ;= 1T, ;, and a diffeo-
morphism ¢; ; ,: — . such that ¢, ;. is ¥, ;,-equivariant and

q,i i,J:q

Pj°T.q° Pijg = Pi® Tig-
We call {( i, I, m)} an orbifold structure, and X an orbifold.
Definition 2.3. Let X be an orbifold. Let ( ,I") be a local model of n-dimensional

orbifoldand n: — U < X be amap inducing a homeomorphism /I" = U onto its image.
We call ( ,T,n) a chart if {( ;, T;, m)|i}u{( ,T,n)} is an orbifold structure.

Hereafter we identify /I" with U and omit = when no confusion can occur.

Definition 2.4. Let X, Y be orbifolds and f/: X — Y be a continuous map. We say that f
is a smooth map if for each pe X there exists a chart ( ,,I,,m,) of X and a chart
( s Urs ) of Y, a smooth map f,: ,— ;) and a homomorphism v,: ", = T'f,

241 pe W f(De ri/Trwm-

(2.4.2) [ 18 ¥ ,-equivariant.

(2.4.3) Ty Sy =S, .
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We say that f 1s a smooth embedding 1f f,: ,— ;) 13 an embedding of smooth
manifolds and ,:I', = I'4(,) 18 an isomorphism.

A smooth map whose inverse is also a smooth map is called a diffecomorphism.
A manifold can be regarded also as an orbifold. So the set of all smooth maps C*(X) from
an orbifold X to R is well defined. It is easy to see that C*(X) is a ring.

Remark 2.5. Let X = CxR/Z, where the action is (z,t)+—(— z,t). Then the map
[R->X, f(t) =[0, 1] is a smooth map in our sense but is not a smooth embedding.

We next define an orbibundle. We proceed in the same way and start with the definition
of local model.

Definition 2.6. Let ( ,T') be a local model of an n-dimensional orbifold. Suppose that
we have a linear representation of I on R*. We say that a pair (xR, T, pr)is a local model
of smooth orbibundle of rank k over ( ,T). Here pr: xR¥/T'— /I is the projection.

Let( xR T, pr) be alocal model of smooth orbibundle of rank k and ( o Lg Ty bean
induced chart of an orbifold ( , I'). We then obtain a local model of smooth orbibundle of
rank k over ( ,, I')) by restricting( xR T, pryto . Let( ,xR" T, pr)denote it. We say
that ( ,xR¥, T, pr) is an induced chart. We remark that it is well defined in the sense of
a germ.

Definition 2.7. Let E and X be orbifolds and pr: E - X be a smooth map. A structure
of smooth orbibundle on pr: E — X is the following collections of objects.

(2.7.1) Family of charts ( ;, I';, 7)) of X such that {j, /T, =X.

(2.7.2) A local model of smooth orbibundle of rank k( ;xR I}, pr) over ( ;,T7;) for
each i.

(2.7.3) Maps #;: ;xR*>E such that ( ;xR%T;,7) are charts of E and
(J; «xRYT;=E.

These objects should satisfy the following compatibility conditions.

(28) Letge ;/Iin I, and ( , ;X% R, I',.:, pr) be induced charts. Then, by shrinking
if necessary, there exists a difffomorphism @; ;.,: ,;xR*—> , ;xR* such

i
that
(2.8.1)  @; jq18 Y j.,equivariant, where y; ;. ,:I, ; = I', ;is an isomorphism as in Definition
2.2
(282) @iq: 4ixR*> ,;xR¥ commutes with the projections ,;xRf—> .,

. xR¥—> . ;and is a linear isomorphism on each fibre.
(2.8.3) pFo@;q = pF, where pi: xR*¥—> s alift of pr.

We define a chart of orbibundle in a way similar to Definition 2.3.

If X is an orbifold then its tangent bundle TX is well defined as an orbibundle. If
f: X - Y is an embedding of orbifolds then the normal bundle NyX is well defined as
an orbibundle.

One defines in an obvious way the notion of bundle map covering a smooth map.

We can define a Whitney sum, subbundle, quotient bundle, tensor product, etc. of
orbibundle in an obvious way. Also if there 1s a smooth map f: X — Y of orbifolds and an
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orbibundle E — Y then the pull back f*E is well defined as an orbibundle. There is a bundle
map f:f*E — E covering /: X —» Y.

A section s: X — E to an orbibundle is a continuous map such that pres = id. We say
s 1s smooth if it is a smooth map of orbifold. Let C* (€2, E) be the set of all smooth sections
on Q < X. It is easy to find a C*(Q)-module structure on C*(Q, E).

3. MULTISECTION

For a space Z, let #*(Z) be the kth symmetric power of Z. Namely we put
IHZ) =ZF| 7~

Here %, is the symmetric group of order k! which acts on Z* as permutations of the factors.
If Z is an orbifold then ¥%(Z) is an orbifold. If there is a smooth action of I" on Z, then it
induces a smooth action of I' on #*(Z).

Definition 3.1. Let ( x R% T, pr) be a local model of smooth orbibundle of rank k over
( ,T) and 7 be a positive integer. An /-multisection of ( x R¥, T, pr) is a continuous map
s:  — 9%"(R¥) which is T-variant.

We define the smoothness of a multisection later. (Definition 3.8).
We remark that there is a canonical map tm,.: ' (Z) — &'"'(Z) for each /,/’. Namely
we define

[ X1y oo s X ] =X oo s Xgs ooy Xpy ven s X/ ]
. J . J
4 s
£ limes #7 limes

Ifs: — .%(R") is an /-multisection then tm,. < s is an // -multisection.
Ifs: —.%’(R"is an /-multisection and if ( ,x R¥, T, pr) is an induced chart then the
restriction of s is an /-multisection over ( , x R%, T, pr).

Definition 3.2. Let pr: E —» X be an orbibundle. A multisection is an isomorphism class
of the following objects ({( ; x R%, T}, pr)}, {s;}) such that

(32.1) {( ;xRKT;,pr)} is a family of charts of E such that {J; ;/T; = X.

(3.2.2) s; is an /-multisection of ( ; x R¥, T}, pr).

(32.3) Letge ;/Iin ;/T;. We have an /-multisection s; , on ( ;% R, I'; ;. pr) and an
/~-multisection s; , on ( , ;xR%T, ;, pr) on induced charts. Then

Pijiq 1My, Si,q = 1M;,° 85.4° Pijig-
Here ¢; ;.,1s a map in Definition 2.2 and (?)i,j;q :S%7i(R%) — S”"i(R¥) is a map induced by the

restriction of the map @; ; , in Definition 2.7 to each fibre.
We say that ({( ;xR& T, pr)}, {s:}) is equivalent to ({( {xR5T7,pr)}, {si}) if the




ARNOLD CONJECTURE AND GROMOV-WITTEN INVARIANT 943

We have the /-multisection s;, on ( ,;xR&T,;,pr) and the /}-

;-multisection s}, on
( 4.;xRETy ;,pr) on induced charts. Then

= ’
Pi,jsq° My © Si g = 1My, 2 S ° i jig

Here the notation is as above.

Let s be a multisection represented by ({( ; xR, T}, pr)}, {s;}). If g€ ;/T;, then we say
that (( ; x R%, T, pr), s;) (or simply s;) is a local representative around q. Using the set of germs
of multisections we can define a sheaf. It might be shorter to use sheaf theory. However, to
keep the exposition as elementary as possible, we do not take that way.

Definition 3.3. For an open subset Q of X, we let C9(Q; E) be the set of all continuous
multisections over Q.

It is easy to see that the ring C°(Q) acts on C2(Q; E). It might be slightly less obvious to
define the sum sP 4 52 of two multisections. To define it, it is enough to define a local
representative around each ¢. Let (( ; x R%, T}, pr), st”) and (( ; x R%, T}, pr), s§2)) be the local
representations. By shrinking ;, ; if necessary, we may assume that ;= ;= |,
I =T; =T'. Now let us consider the following map

+: (R x ' (R¥) — 9" (R¥)

+([X1, axl]a[yla 7y/"]) = [xa+yb:a =1.. /sb =1.. /,]

Definition 3.4. Let the sum of two multisections sV + s be the multisection whose
local representative around ¢ is ((  xR*, T, pr), + (st", sﬁ-z))).

It is straightforward to verify the compatibility condition so we omit it. We remark that
the sum is associative and commutative. Hence, it defines a structure of commutative
monoid. (However, it does not give the structure of abelian group.)

We thus defined a C°(Q) “module structure” on C2(Q;E). Therefore, we can use
partition of unity to glue multisections. However we must be careful to apply it because of
the following trouble. Even if every s; is C°-close to t, the sum Y z;5; may not be C°-close to
t. Y yis; is CO-close to ¢ if ¢ is single valued. (We remark also that (f+ g)s # fs + gs in
general for s e COL(Q; E), f, g € C°(Q).)

We next discuss the transversality of a multisection. To do so it is convenient to have

a notion of branches of multisections. Unfortunately, it is not always well defined for
continuous multisections.

Definition 3.5. A multisection s is said to be locally liftable if for each point g there exists

a local representative (( ,x R, T,,pr),s,) such that the map s,: , —».%"(R") is lifted to

> g q
amap §,;: ,—(RY".

Remark 3.6. We do not require §,: , = (R¥)’ to be I, equivariant.

Example 3.7. Let X =C and E=CxC be the trivial bundle. We consider the

2-multisection s(z) = [ﬁ, — \ﬁ]. This multisection is not locally liftable. However, we
can approximate it by a locally liftable one in the following way.
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We choose a smooth function y :[0, co) - [0, co) such that y(t) = Ofort < e, y(t) =t for
t > 2¢ and is strictly increasing for > &. Let s,(z) = s{y(|z])z). s; can be chosen arbitrary
close to s in the C°-topology. We now claim that s, is locally liftable. In fact it is obvious
that s; is locally liftable at z such that |z| < ¢ since it is identically zero around it. On the
other hand at a point |z| = ¢, we can take a branch of \/z in its neighborhood. So s is
locally liftable.

So it may not be so natural to restrict ourselves to locally liftable multisections.
However, since we use only locally liftable multisections, we consider them only. We remark
that usual (single valued) section is locally liftable and the sum of locally liftable multisec-
tions is locally liftable.

Definition 3.8. A multisection s is said to be smooth (resp. of class C*) if it is locally
liftable and each branch of it is smooth (resp. of class C¥). Let C¥(Q; E) be the set of all
multisections of E on Q of class C* (k= 1,2, ..., o0).

If s is a locally liftable multisection then a branch of s at g is a component of
3,0 4~ (R¥) where §, is as in Definition 3.5.

Definition 3.9. A multisection s is said to be transversal to 0 if it is locally liftable and if
for each ¢, each branch of s at ¢ is transversal to 0.

We next state the transversality theorem for multisection. For this purpose, we define
the C*topology (k =0, ..., o0) on the set of all multisections.

Definition 3.10. Let s,, s € Ck(Q, E). We say that s, converges to s in the C*-topology if
the following is satisfied. For each compact set K, there exists a covering of it by charts
( ;xR& T, pr) of E which is independent of n, and s,, s has a local representatives on
( ;xRX Ty, pr) as /-multisections s, s, such that /; is independent of n and that each
branch of s{’ converges to a branch of s in the C*-topology.

(Here and hereafter the running index » is not the same as the dimension of the spaces.)

We now state our transversality theorem.

THeOREM 3.11. Let s € Ci (X E) be a locally liftable smooth multisection on a compact
orbifold X. Then there exists a sequence s, € 1,,(X; E), such that s, converges to s in the
C*-topology and that s, is transversal to 0.

Proof. We take a finite open covering
X=)<
Ut

by charts and local lifts §;: ; — (R¥)"" representing s. Let y; be a partition of unity
subordinate to X ={J, ;/I;. For an element v;e C*(  R%), we define elements
av(v)) e C( ;/T;) as follows. av(v;) is a #I;-multisection such that

av(vi)(x) = [y~ ' (vi(yx)): y e T].
Now forv=(v)e ,C*( ;,R"), we put

O =5+ )z av(vy).

We will prove that for v = (v;) in a Baire subset ,C*( ;,R¥), Q(v) is transversal to 0.
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Let ¢ € X. Then 1n a neighborhood of ¢, branches of Q(v) are given by
sj(x) + Z 1)y (%),

Here s;is a branch of s, we take y; € I; for each i, and y; is a partition of unity such that at
least one of y; is nonzero. (We remark that we are not taking the average with respect to
y € I'.) It follows that this branch is transversal to 0 in a neighborhood of ¢ for each v = (v;)
in a Baire subset ,C”( ;,R¥).

Since there are only finitely many branches and we can cover our orbifolds by finitely
many such neighborhoods, it follows that the set of all v such that Q(v) is transversal to 0 is
dense.

Hence we have a sequence of v, converging to 0 in the C®-topology such that Q(v,) is
transversal to 0. It is easy to see that Q(v,) converges to s in the C*-topology we defined
above. The proof of Theorem 3.11 is now complete. O

Let us recall the following well known lemma.

LemMma 3.12. For any continuous single valued section s € C°(X; E) on a compact orbifold
X, there exists a sequence of smooth single valued sections s, which converges to s in
C°-topology.

Remark 3.13. It seems possible to show that any continuous multisection can be
approximated by smooth multisections in the C°-topology. We do not try to prove it since
we do not need it and since a problem of pathology makes the proof cumbersome.

Proof of Lemma 3.12. We cover X by charts X =(J; ;/T; and let s;: ; > R* be the
I'-equivariant map representing s. We find a sequence of smooth maps s;,: ; —»R*
converging to s; in the C°-topology. We then obtain a smooth and I'-equivariant map
si.«: : = R* by putting s} , = Y. er, ¥Sin/ #1i. Choose a partition of unity y;:U; — [0,1]
and put s, =Y, :8:.,. Clearly s, has the required properties. The proof of Lemma 3.12
is complete. O

Finally we state the relative version of Theorem 3.11. The proot 1s the same as
Theorem 3.11 and is omitted.

Lemma 3.14. Let se€ C (X E) be a locally liftable smooth multisection on a compact
orbifold X. Let K < X be a compact set and assume that s is transversal to 0 on a neighbor-
hood of K. Then there exists a sequence s, € C;{(X; E), such that s, converges to s in the
C™-topology, s, is transversal to 0 and that s, = s on K.

4. THE EULER CLASS

In this section, we define the Euler class of an orbibundle using multisections, which we
introduced in Section 3. We remark that one can define it by using Chern-Weil theory and
orbiconnections. (See [64].) However, our approach here can be generalized directly in later
sections when we study the perturbation of the moduli space of pseudoholomorphic curves.
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Let pr:E — X be an orbibundle and s, € C°(X;E). We consider its locally liftable
smooth perturbation which is transversal to 0 and is constructed in Section 3.

Definition 4.1. s~ (0) is the set of all points ¢ of X such that s, ;(q) = 0 for some
branch s, ; of s around gq.

Lemma 4.2, If s is generic, then s~ (0)y, has a smooth triangulation of dimension
dim X — rank E.

Here we say that s~ 1(0),, = [ J A, is a smooth triangulation if it is a triangulation and if
the maps A, - X are smooth.

Proof. First we may assume that s is transversal to 0 by Theorem 3.11. Let g € s~ 1 (0)seqs
and s, ;1 ,— R¥, i=1, ...,7, be the branches of s around ¢. Then a neighborhood of g in

s~ 1(0)s; is diffeomorphic to
,
ﬂq(:kj Sé:}(O)).
i=1

Heren, : , — X. Since s is transversal to 0, it follows that s, 1(0)is a smooth manifold. The
lemma follows immediately in the case when dim X — rank E is 0 to 1, (that is the case we
need to prove Theorem 1.1.)

In general we need some more technical argument to exclude the case when the set
where two different branches begin to bifurcate is pathological.

For p € X we define val( p) as the number of branches which have different values at p.
This number is independent of the choice of local lift.

We also consider the order # I, of the isotropy groups I, = {y e I'| yp = p}. Here /I'is
a chart containing p. It is independent of the choice of p.

We first prove that for generic s the set

Xoom=1{peX|valp) =v, #I,=m}.

is a smooth orbifold with smooth boundary. To see this we go back to the proof of
Theorem 3.11 and use the notation there. It is well known and obvious that the set
{pe X | #1, = m} is smooth. We may chose the partition of unity z; so that the domains
%7 1(0) have smooth boundaries which are transversal to each other and to
{pe X | #1, = mj}. Therefore, we are only to work in the set

Yow=1{peX|#L,=m #{i|y(p) #0} =w} .

We consider a small neighborhood W(p) of peY,,,, in Y, .. Now the difference of

the two branches (say s, , and s, 4), of the multisection s,, we constructed in the proof of
Theorem 3.11, is

Y 1) i vilyi (X)) — yid vilyi p(x)))

iel,

onx € Y, .. (Note that we start from a single valued section.) Here I is a set of order w. We
find that y;(x) # 0 for any ie I, and any x e Y,,, in a neighborhood of a given point
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p € Y, . For each pair « and f either y; ,(x) # y; s(x) for every x € W (p) or y; ,(x) = ; 5(x)
for every x € W (p).

If there exists i € I such that y; ,(x) # y; g(x) for every x € W(p), then we can take v;
generic such that the set {x € W(p)|s, .(x) = s, 4(x)} is smooth.

If 7; ,(x) = v; p(x) for every x € W{(p) then

S, a{x) — Sn,ﬂ(x) = Z Xi(x)("/i,_al"i - yi?ﬁlvi)(x)-
ielg
In this case again we can take v; generic that {x € W(p)|s, ,(x) = s, s(x)} is smooth.
Thus we have proved that X, ,,"Y,, ,, is smooth for any w. Therefore, X, ,, is smooth. It
is easy to see that s~ 1(0)e; " X, is a disjoint union of smooth finitely many orbifolds (with
boundary). Lemma 4.2 follows immediately. O

We remark that by the proof we may take triangulation s~ *(0), = (] A, such that the
map A, - X has a lift to A, - , for each a and also we may assume that val, and #1, is
constant in the interior IntA, of each simplex.

To go further, we need to define orientation of orbifolds and orbibundles.

Definition 4.3. A local model of an n-dimensional orbifold ( ,I")is said to be oriented if
we have an orientation on  which is preserved by the action of I'.

An orbifold is oriented if it has an open covering X = (J; U;, local models ( ;,T3) and
charts ; — U such that ( ;,I})is oriented and that the diffeomorphism ¢, ;,: ,; = , ;in
Definition 2.2 is orientation preserving.

A local model of smooth orbibundles of rank k, ( xR . T, pr) over ( ,T)is oriented if
the action of I' on R* is orientation preserving.

An orbibundle pr:E — X is oriented, if there exist charts ( ; x R%T;,7;) such that
( :xR&T,, pr) is oriented and @; ;,: ,:xR*—> ,;xR* in Definition 2.7 is fiberwise
orientation preserving.

We are going to define the Poincaré dual to the Euler class of an oriented orbibundle
over oriented orbifolds. In fact we can work under a bit weaker assumption. Let pr: E - X
be an orbibundle over an orbifold X. The determinant bundle det TX of the tangent
orbibundle of X and determinant bundle detE of E are well defined as orbibundles.
Hereafter in this section, we assume that we have a trivialization of det TX & det E. Note
that if X is oriented and E is oriented then a trivialization of det TX & det E is induced by
the orientations.

Now let s be a multisection which is transversal to 0. Let s~ *(0)y, = (U A, be a smooth
triangulation. We fix an orientation for each simplex A, of dimension n —k =
dim X —rank E. We then define multiplicity of each simplex A, of dimension
n —k =dim X — rank E as follows. We may assume that Int A, = X, ;. (Namely we may
assume that it is in the regular part of the orbifold.) We take a lift h,:A, —» . Let

Sqit g = R, i=1, ...,/, be the branches of s around q,. Let iy, ... ,im, be the set of all

indices i such that s, ;(h,(x)) =0 for xelIntA,. (This is independent of x since

IntA, =X, o.) Foreachj=1,...,m, we can assign sign ¢; = £ 1 as follows. We have an
Dh Ds

0— T.A,—>T wh, Rk
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By assumption we have a trivialization of det T,A,, detT , ® detR*. We put ¢; = + 1 if
exact sequence 4.4 is compatible with the trivializations and we put g; = — 1 otherwise.

Definition 4.5. muly, = Y7, &;//,. Here 7, is the number of branches of s in a neighbor-
hood of ¢,.

We remark that mul, is independent of the choice of local representatives of 5. To see
this, we need only to check that it does not change when we replace s, by tm, s, . In that
case, the independence is obvious since the denominator and the numerator are both
multiplied by 7.

Definition 4.6. We define a singular chain s~ *(0) with Q coefficient on X by

s~ H0) = mul, - A,.

If we change the orientation of A, then the sign of mul, changes. Hence s~(0) is
independent of the orientation of A,. As a singular chain it depends on the choice of the
triangulation. However, we are going to show that it is a cycle and its homology class
depends only on the orbibundle.

LemMma 4.7. 0s~*(0) = 0 as a singular chain.

Proof. Let A, be an n — k — 1 dimensional simplex of s~1(0),,. We are going to show
that the coefficient of A, in ds™(0) vanishes. We first assume that IntA, = X, ;. Let
yeIntA,. If val, is locally constant at y, then s™1(0), is a smooth manifold in its
neighborhood. Hence it is immediate to see that the coefficient of A, in ds~(0) vanishes.

If val; is not locally constant at y then there are two cases. One case is that
IntAy < Int X, ; and dim X, ; < dim X. In this case, in a neighborhood of y, our set
s~ 1(0)s( is @ union of finitely many smooth manifolds which intersects on Int A, < Int X, ;.
Hence the coefficient of A, in ds~!(0) vanishes also.

The other case is dim X, ; = dim X and Int A, < 0X, 4. In this case there exists v/ > v
such that Int A, < 0X,. ;. We then find a local lift of s around y such that there are v’
different branches as a germ at y {the pointin  which goes to y.) We can then find that, in

a neighborhood of y, the set s~(0),, is a union of finitely many smooth submanifolds,
though some of them may coincide on X, ;. (Fig. 4.8). It also follows that the coefficient of
A, in 0s™1(0) vanishes.
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Next we suppose that Int A, X, ;. Then Int A, < Int X, ,. Let y € Int A,. A neighbor-
hood of y in X is identified to

R
R"™ 1+ :
{1
The restriction of E there is
Rn—l XRXRzm_l ><Rk—Zm-*—l
E3y |
We put 7:R¥ > R* t(vy, ..., vi) =(— V15 v+os — Vom—1,Vam, --- » V). Then our multisection
is given by
s(x,a) = [s1(%,q), ...,8,(x,a), 181 (X, — a), ... ,15,(X, — a)].
It follows that the coefficient of A, in s~ !(0) vanishes also in this case. The proof of
Lemma 4.7 is now complete. O

TurOREM 4.9. The homology class [s™(0)] € Hgim x - rank £(X ; Q) is independent of the
choice of multisection and the triangulation of s~ '(0)s, and depends only on the orbibundle E.

Proof. Let sy and s be the two multisections which are transversal to 0. We consider the
multisection s{x,t) = tso(x) + {1 — t)s;(x) of E xR — X xR. By using Lemma 3.14, we can
perturb s so that it is transversal to 0, and that s|x, o, = So, S|x«(1; = $1. Then we have
a space s~ 1(0)see V(X x [0,1]). We can extend given triangulations of sq 1 (0)se and s1 *(0)s
to a triangulation of s~ (0),e; (X x [0, 17). Using this triangulation we obtain a Q chain
s~ 1(0)n(X x [0,1]). By the proof of Lemma 4.7 we have

ds™H0) N (X x [0,1]) = 57 1(0) — 55 *(0).
Theorem 4.9 follows. |

We next assume that X is oriented. It follows that X is a Q-homology manifold. Hence
we have Poincaré duality over Q

HY(X:;Q) = Hyimx-4(X: Q). (4.10)

Definition 4.11. We call the Poincaré dual to the element [s~2(0)] € Hyim x — rank £(X ; Q),
the Euler class of E.

Remark 4.12. We can continue in a similar way to define the Chern classes and the
Pontrijagin classes. The basic idea is to define a “multivalued classifying map” by taking
a finitely many multisections s; such that, for any choices of branches of s;, the values of s;,
i=1,2, ..., at p generates the fiber of the orbibundle of p. We omit this construction since

5. KURANISHI STRUCTURE

Definition 5.1. A Kuranishi neighborhood of p € X is a system (U, E,, s, /,) where

(5.1.1) U,= ,/T,is an orbifold and E, is an orbibundle on it.

(5.1.2) s, 1s a (single valued) continuous section of E,,. 2 VM 0{1‘&{% ﬁahﬁlryz
5.1.3 isah hism from s, *(0) t ighborhood of p in X.  °
( ) ¥, is a homeomorphism from s, *(0) to a neighborhood of p in (%Pgsv)
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P> =pot

We write (U,, E,, s, ) ~ (Uy, E},, 5,,,) if there exists another Kuranishi neighborhood yeﬁa,ﬁ‘@n
(U, E,,sp.¥p)and I:U, - U,, I':U, - U,, J:E, > E,, J': E;, > E, such that betneen

Definition 5.2. Let (U,, E,, s, ¥,) and (U, E,,, s}, ,) be Kuranishi neighborhoods of p. co nJ‘U ioh

(5.2.1) I, I’ are difftomorphisms to their images. J, J' are bundle isomorphisms covering I,
I’ respectively. dim U, = dim U, = dim U,,.

(522) Jesy=sp°l, Jes,=5,°I"

(52.3) Yol =y, Yol =4,

The equivalence class of Kuranishi neighborhood of p with respect to ~ is called a germ
of Kuranishi neighborhood. (U,,E,,s,,,) representing it is called a (representative of)
Kuranishi neighborhood.

Definition 5.3. A Kuranishi structure of dimension n on X assigns a germ of Kuranishi
neighborhood to each p e X, And for each representative (U,, E,,s,,¥,) of it, and each
q € Y,(s, 1(0)) there exists a germ of maps ¢, and §,, with the following properties.

fuced cholee? or ambiguity? oo ol or just some satisfy cocycle 2
(53.1) @,:U; = U, is an embedding of orbifolds. ¢,,: E, — E, is an embedding of orbi-

bundles covering ¢,,: U, - U,,. /—‘ COC}’CZ& COﬂﬂ?ﬁb” unceav

(53.2) 85,2005 = Ppg©Sgs Wp° Ppg = Y. )
(53.3) If r e yy(sy 1(0), then Bra® Por = Bpr. ~ on what ’flom "of agrms2
(5.34) dimU, —rank E, = n is independent of p. — meaning th . d %r 5¢
- COmPn. 'bfﬁf}/ with obowe
We call (U,, E,, s, ¥,) a chart and (¢4, ¢,,) the coordinate change. cgn‘jf:fuétpn pﬂ&_-&on .
For eadh repegntatives UpUy, U, tore edst Yo, ar, - s0 that [ helils T 0 L holds for any choioe of P
Here, by germs of maps ¢, and ¢,,, we mean the following. For each sufficiently small
representative (U, Eg, 5,,Y,), we have @,,:U, > U,, @p:E; = E,. If (U], E, s3,,),
Bpg: Uy = U,, ¢y E, — E, be another representative, and if 1:Uj — U,, I':U; - U,,
J:E, > E, J:E,— E,be as in Definition 5.2, then

Seoms to ndicate that %‘Ily owe. Fixed

) o and cocycle condition is [UpgJoLpar) =(¢%r]
(542 Gy = o O I = Opa o o Jugacy classes — nete that this composttion ic
When we replace (U, E,, s, ,) by another representative, we assume a similar compati- &'
bility condition as (5.4). Hereafter we omit this kind of remarks. . Lﬂ )
(& cocy ol condition for ore set of repeent atives does not imply cocycle for oter chotis
Remark 5.5. Since we are using map germs it may be natural to use sheat theory and ep'eprca"ﬁw’CS

maybe etale topology (because the action of a finite group is involved.) But we do not try to
do it here to keep the exposition as elementary as possible.

(54.1) @pol = @pgs Opg 1’ = @y

Our purpose in Sections 5, 6, is to define the fundamental class of Kuranishi structure.
We need to define an orientation of Kuranishi structure for this purpose. We first start with
defining a “tangent bundle”. Let g, p be as in (5.3). We have a normal bundle Ny, Uj.

Definition 5.6. We say that a Kuranishi structure (U, E,, 5,, V., 0 ,q.0pq) has a tangent
bundle if there exists a family of (germs of) isomorphisms

@:Nuan = E,/E,
s reeds to ke ds, (as pointed out by Joice),
thus peed sp dilbmblable
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such that the Diagram 5.7 below commutes for U, = U, = U,

0 - Nqu, - NUpUr - NU,,Uq|U,u - 0
1@ 1@ 1 Pn .
0 - E /Er - Ep/Er - Ep/Eq|U,4 - 0

q

Diagram 5.7.

We next define an orientation of Kuranishi structure. Let det TU,, detE, be the
determinant bundles of tangent and obstruction bundles. The isomorphism
®,,: Ny U, = E,/E, induces an isomorphism det TU, ® det E, |y, = det TU, ® det E,.

Definition 5.8. We say that a Kuranishi structure (U, E,,, $,, ¥, © 4. @) 18 oriented if it
has a tangent bundle, and if there are family of trivializations of det TU, ® det E, which is
compatible with the isomorphism det TU, ® det E, |y, = det TU, ® det E, of bundles.

Example 5.9. Let M be a compact manifold which is not orientable. Let TM be its
tangent bundle. We put E, = TM and obtain a 0-dimensional Kuranishi structure on M.
(Here U, = ,= M ands, =0.)Since det TU, ® det E, = det TM ® det TM is canonically
oriented, it follows that this Kuranishi structure is oriented.

In this example, the fundamental class is well defined. In fact it is the “Poincaré dual to
the Euler class of E = TM.” We remark that the Euler class of E is not well defined and
Poincare duality is not well defined either over the integers. However “Poincaré dual to the
Euler class of E=TM” is well defined and is equal to the Euler number
€ Hy(M;Z) # HY™M(M:Z). Our definition of the Euler class in Section 4 is designed to
include this case.

Next we are going to define a stably almost complex structure. For this purpose it is
useful to define a K-theory over Kuranishi structures. Also in order to construct an
orientation of Kuranishi structure it is essential to use it. The K-theory we use is a kind of
K-group of orbibundles. However, we need to modify the usual definition in a couple of
places. First of all, we need to have tangent bundle as an element of our K-group. So we
need to consider Grothendieck group of some kind of systems of pairs (T'U,, E,) with

compatibility condition as Diagram 5.7, in place of taking a Grothendieck group of
orbibundles. In fact, in the case of usual K-theory, it gives the same result. (One can prove it
by using Mayer-Vietoris exact sequence of K-cohomology.) However, in our situation, it
may define a different group. The reason is as follows. If we have a vector bundle E on an
open set U < X, then we can find E’ such that E@® E’ is trivial (and in particular is
a restriction of a vector bundle on X). In the case of orbibundle it is no longer true. (The
same trouble already happens when one tries to define K-group of orbibundles over
orbifolds.) The experts of K-theory may find it routine, but we include it here since there is
no appropriate reference.

Definition 5.10. Let X =(X, (U,,E,, Sy, ¥y, Ppg> Ppg)) 15 a space with Kuranishi struc-
ture. We say the following objects are a bundle system.

(5.10.1) For each point p € X there exists a germ of orbibundles Fy ,, F;,, onits Kuranishi
neighborhood.
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(5.10.2) Let gey(U,) and ¢,, is the coordinate change. Then there exist germs of
embeddings of orbibundles ®y.,,: Fy g = Fy plu,, Poipg: Fag = F2 plu, and an
isomorphism of orbibundles

‘Fl,p|Uq = F2,p|U,,

D, :
pq Fl,q 1_72

sq

(5.10.3) Ifrey (U, = ¥,(U,), then @y, o @y, = Dy, ), Dy o Dy = Dy .
(5.10.4) The following diagram commutes for r € Y (U,) < ,(U,).

0 _)Fl,q|U,. N Fl,p|U, Fl.p|U,.

— - 0
Fl,r Fl,r Fl,q|U,4
|®. | @ 1@
FE F F
0 2,q|U,, = 2,p|U,4 N 2,p|Ur = O
F2,r F2,r F2,q|U,.

Diagram 5.11.

We say that (F, ,, F, ,) is a chart of our bundle system and (®
coordinate change.

We define an isomorphism between two bundle systems as follows.
((F1,p> F2,p)s (@1 g @2, pg» ©ypy)) 1 isomorphic to ((Fy,,, F3 ), (D pg> D, pg» Ppg)), if for each
p € X there exists a germs of isomorphisms ¥y ,:F; ,=F) ,, ¥, ,:F, ,=F5 , which
commute with ®y.,,, ®,.,,, ®,, and O, D3.,,, D).

va> P1,pg> P2, pg) 18 1t

Example 5.12. If a Kuranishi structure has a tangent bundle then its tangent bundle is
well defined as a bundle system. Namely we take F, ,=TU,, F, ,=E,, ©, ,, = @,
®,.,, is an inclusion: TU, - TU,, that is the differential of the embedding ¢,,. The
isomorphism Ny U, = E,/E, induces an isomorphism

) :Fl,p|U,,_)F2,p|U,,-
prq F F
1,9 2,9

The commutativity of Diagram 5.11 is a consequence of the commutativity of Diagram 5.7.

Definition 5.13. A bundle system is said to be oriented if F, ,, F, , are oriented and

_Fl,p|U,, F2,p|U,,
D, -
F F
1,9 2,q

is orientation preserving. It is said to be complex if F; ,, F,, , are complex and @y .,,, ®,. ;.
®,, are complex linear.

One can define Whitney sum, tensor product, etc. of bundle system in an obvious way.

Definition 5.14. A bundle system ((Fy ,, F2 ), (P1, pg> P2, pg- Ppg)) 1s said to be trivial if

there exist germs of isomorphisms F; , = F, , which are compatible with (®y ,,, ®; ,,, D).



ARNOLD CONJECTURE AND GROMOV-WITTEN INVARIANT 953

Definition 5.15. We consider the free abelian group generated by the set of all isomor-
phism classes of bundle systems and divide it by the relations

[((Fl,pa FZ,p)a ((Dl,pq’ (Dz,pqaq)pq)) @ ((Frl,pa F,Z,p)a ((I)Il,pqa (D,Z,pqa (I);?q))]
= [((Fl,pa F2,p)’ ((I)l,pq’(DZ,pq’(I)pq))] + [((F,I,pa ,Z,p)a ((I),l,pqa ,2,pqa (I);u]))]

L((F1,ps F2 p)s (@1, pg> P2 g ©p)) 1 =0 3 ((Fy s Fa, ), (D1 pg> P2, g py)) 15 trivial.

Let us write KO(X) for the group we obtain and call it the real K-group of our Kuranishi
structure. By using oriented bundle system and complex bundle system, we define KSO(X)
and K(X).

There is an obvious map

K(X) > KSO(X) - KO(X). (5.16)

The tangent bundle system (T'U,, E,) defines an element of KO(X), which we write
[TX].

Definition 5.17. A Kuranishi structure X is said to be stably orientable if it has a tangent
bundle and if [ T X ] is in the image of KSO(X). It is said to be stably almost complex if [T X ]
is in the image of K(X).

This definition is a generalization of the definition of stably almost complex structure of

manifolds [48].
Lemma 5.18. A Kuranishi structure is stably orientable if and only if it is orientable.

We remark that we say that a Kuranishi structure is orientable if it has an orientation in
the sense of Definition 5.8. There is a result corresponding to Lemma 5.17 in usual
K-theory, which is obvious.

Proof. Let ((F1,p, Fa,p), (@1 g, P2, g, Ppy)) be a bundle system. It is easy to see that
the line bundle detF; ,® detF, , is well defined and depends only on equivalence
class of ((Fy ,, F3 ) (P15 P2, pg-Ppg)) in KO(X). Furthermore, it is trivial if
((F1,p> F2,p)s (@1 g, D3 g D)) 1s in KSO(X). On the contrary, we suppose that the space

X with a Kuranishi structure 1s orientable. We consider its tangent bundle system (7°X, E).
By definition, we find that (TX,E)@®(TX,TX) is orientable bundle system. Hence
[TX]=[(TX,E)®(TX,TX)] is in the image of KSO(X). The proof of Lemma 5.18 is
now complete. ]

6. PERTURBATION OF A SPACE WITH KURANISHI STRUCTURE

Let X =(X,( I, E,. 54, ¥,)) be a space with Kuranishi structure and we assume that

®,,:Ny U, = E, /E,.
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Definition 6.1. (P,((Uy,, Y p, $p):p € P), ¢pq. P pg) 18 said to be algood coordinate svstengjof 2
X if the following conditions are satisfied. P = X is a finite subset equipped with an order, _ PW“Z
(U, sp) 1s a representative of a chart for each p e P, U,, = U, 1s a subset for each p,q with totrld ¢ Z
‘Pp( —1(0))mupq(g‘1(())) #0, ¢g<p, and @,,:U, > U, (ppq:Eq|Up’q—> E, are embeddings, Thp, 6.4 seon -
such that to cal A‘)f' 2

6.1.1) Uperti(s; 1(0) = X. totnl order
(using t‘n%rcfc‘an)

(6.1.2) U, is an open neighborhood of ¥, ' (,(s, *(0)).

(6.13) If xeU, and ¢,.:Us=> U, @i U= Uy, @ptEx—> E,, ¢4t E.— E, be map
germs giving the coordinate change. Then ¢, ;0. = Qpxs PpgPyx = Ppx as map
germs.

(6.1.4) Suppose r < q < p, wp(s_l(O )m&//q(s_l(O))mlp (s, 1(0)) # 0. Then @py0 P = @pr»

Ppg° Pgr = Qpr ON @y ( )andE|
q p /\ﬁwj/ ‘HIU rqul)’es ?qr (UP?)C UP,,.
(6.1.5) 8,0 0pg = DpgoSps Wpo @pg = Wy

Remark 6.2. Here (U,, E,, s,) is a representative of chart hence it is a Kuranishi
neighborhood and is not a germ. Similarly ¢,,: U, ; = U,, ¢,,: E4ly,, = E, are maps and
not germs of maps. (6.1.4), (6.1.5) are equalities of maps and not of map germs. Condition
(6.1.3) is added to make sure that our coordinate system is compatible with the Kuranishi
structure we start with. If there exists (P,(U,, ¥, s,):p € P), @pq, 0pq) satisfying (6.1.1),
(6.1.2), (6.1.4), (6.1.5), then we can define a Kuranishi structure on X so that (6.1.3) is
satisfied. We omit the proof of this fact since we do not use it.

Lemma 6.3. For any open covering of the space X, there exists a good coordinate system Cf Ml:ﬂg
such that the covering (6.1.1) is a subdivision of the given open covering.
g (6.1.1) f the g p g S0 P 953

This is rather a technical lemma. We give a proof of it at the end of the section for
completeness.

Tueorem 6.4. Let (P,(U,, Y, 8,):p € P), 0py, ®pg) be a good coordinate system of
a space X with Kuranishi structure. Suppose that X has a tangent bundle given by

®,,: Ny U, = E, /E,.

Then, for each p € P, there exists a sequence of smooth multisections s, , such that

(6.4.1)  Spq0 Ppg = Ppge

(642) Tms,, =s, in the C’-topology

n—w

(6.4.3) s, is transversal to 0.

(6.4.4) Let x € Uy,,. Then the restriction of the differential of the composition of any branch
of S,. and the projection E,— E,/E, coincides with the isomorphism
<I>pq.NUpUq =~ E,/E,
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Proof. We write P ={py,p, ...} such that p;<p;.;. We may assume that
rank E, < rank E, . We constructs,, , by induction oni. Fori = 1, we apply Theorem 3.11
and Lemma 3.12 to obtain s, _, satisfying (6.4.2) and (6.4.3). Now let us assume that we have
constructed s, , for j < i satisfying eqs (6.4.1)-(6.4.4) and will construct s,, ,. For each j with
Uy (sy, 1(0))0%}_(‘9;,, 1(0)) # 0, we have a section Spn O @, (U, ). We first extend it to its
tubular neighblorhood in U,. For this purpose we use the‘isom‘orphism UP

C

/] [
(I)pipj: NUp,- Upi = Epj/Ep.i' = \

Namely we identify Ny, (¢, (U,,)) with a tubular neighborhood of ¢, (U, ) in U,,. Let
T Ny (@pp(Upp)) = @pp(Upp). We choose and fix a fmetric of orbibundles E, com-
patible with ¢,,, . Using it we decompose

E, ~E,/E, ®E,, 6.5)

S > Sf::fl worry about Lock of COPpactrg
) 1ep! boundary of 1, — e

o) = L@, () @ 5,.,(x). 9O0ksies [ nbdgl insin Y, "

Then we put for x € Ny, (¢,,,(U,,,,)

Here I, is an isgmorphism I,:E,(n(x)) - E,(x) obtained by parallel transport along
b“{‘; 02’0 ‘FDF minimal geodesic. I, is well defined if x is sufficiently close to ¢, , (U, ). Since eq. (6.5) is an
W(OMQW isomorphism and s, , are transversal to 0, it follows that §, , is transversal to 0.
V\b hds 5 Using induction hypothesis we have compatibility condition (6.4.1). Also we have a
compatibility condition for ®,,: Ny U, = E,/E,. Thus §, , for various j together with its
first derivatives (on normal direction) coincide on [ J-<iIm ®p,p,- Hence we can glue §,, , for
various j and s, by partition of unity. (We remark that we did not change the number of
branches when we extend the multisection on ©p,p,(Up,p,) to its tubular neighborhood.
Hence we can add only the branches coming from the same branch to glue them using
partition of unity. In other words, gluing by partition of unity here does not mean we use the
sum in Definition 3.4.)
We then obtain s, , which satisfies (6.4.1), (6.4.2) (6.4.4) and which is transversal to 0 in
a neighborhood of the union of ¢,,, (U, ). Thus we can use Theorem 3.11 or Lemma 3.14 Aﬁ'ﬁeg o, 4
again and obtain s,, ,, which is transversal to 0, and which is equal to s, , in a neighborhood ggr‘vcm;;po et
of the union of ¢, , (U,,,). fere Ye cgm/&nmﬁ of te b b %f) bug
We thus complete the proof of Theorem 6.4. e howe Warmdé/ l‘JL_ljl ot on ,y‘%
nor (s Ye set on ihtch lw_:(b”'P”c,g
Now we use Theorem 6.4 and Lemma 6.3 to define the fundamental class of Kuranishi e b /
structure. We consider the following situation. Let Y be a topological space, and X be a M-" ‘ZE/

Definition 6.6. A strongly continuous map f: X — Y is a system of map germs f,: U, - Y
for each p such that fo @,, = f;.

Suppose that Y is an orbifold. We say that fis strongly smooth if each f, is smooth. We
define the rank of f at p by rank, f = rank(d, f,).

We say that [is of maximal rank if rank, f=min{dim X + dimE,, dim Y’} at every p.

J([X])eHy(Y:Q).

ﬂé construetion of virtual Lurola pontad class
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We choose representatives of map germs f,: Uy ,— Y. We take a good coordinate
system finer than U, ,. We then get a sequence of multisections s, , as in Theorem 6.4. For
each p; we consider a small neighborhood W; of s, *(0). Let & = inf{||s:(x)[||x ¢ W;}. By
. ! e
taking n large, we may assume that for any branch s, ;, of s, , we have pot >0 MS‘;
U:\W; ts compact

whore. constrnctions Fui%: 185,00 — Sl < 1% (6.7) Brereeyply
=1). &=
la W=l =2 &

2. w?_x'm (f'u
usW,ﬂ,zowon"l:{7
\ce, precompa’

wn Uz IWV‘ p LeMMA 6.8. 57 1(0)eq is compact. "M% U=w=s

We let sl,,_i,l,,(O)Set be the set of all x € U, such that s, ; ,(x) = 0 for some branch s, ;, of s, ,.
By (6.4.1), we have @, (x) €5, 1(0) if x €5, 5(0), and if ¢, , is defined at x. We can

thus glue s, %(0),; to obtain a space s, *(0)ser. @y U
-
o VU SnO2 o, CU - @2 i
A

210
'(0)

Proof. By (6.7) s, 2(0)qeq is contained in W;. The lemma then follows from the compact-

ness of X. /\7 Couwld hore E‘uﬂﬁll‘g j
unda ; , 0 .
LemMA 6.9. If s, is generic, then s, (0)s, has a smooth triangulation. 0% bo ’
A : — what heppms
i For single. chart h“f
The proof is the same as the proof of Lemma 4.2. lE P roves ’éﬂn thﬁon-l: ef wnon z
Let $; 1(0)e; = Ju A, be the triangulation. We may assume that each simplex is con- M&M (o7 %)
tained in some U, and can be lifted to ,, and also that val is constant at the interior of QWHW'B‘ of
each simplex. For each simplex of dimension dim X = dim ,, — rank E, we can defineits  pygpy $olds ae
multiplicity mul,, in the same way as in Section 4. O‘F{ﬁn net
. W§ remark that the multiplicity is well deﬁneq. Ne.lrpely let us re?gard th.at .A“ is cqntained even N Aot
either in U, or U,. We then find that the multiplicities we obtained coincides with each
other. This is a consequence of (6.4.4).
We now put

i (s 10) = Y muly £, ([A])- (6.10)

Sy (7 1(0)) is a Q-singular chain in Y. Here f,:U, » Y where A, e U,. The condition
Joo @pq = f; implies that (6.10) is independent of the choice of U, with A, € U,,.

IF we. pecturb on closdl U, (to get £30)
need to cvord zero set on DU, . For a
P Single chart as tns cantahe We int U
but obhrwise not (see U, adore)

Turorem 6.12. If X is oriented then [ f, (s, 1(0)] € H,(Y;Q) is independent of choice
of S

Lemma 6.11. If X is oriented then of, (s, }(0)) = 0.

Again the prootf 1s the same as the proot of Theorem 4.8. We denote the left-hand side

by 7. XD ! agoin, thats a Lot easier for a sing@. chart !

Remark 6.13. Let us assume moreover that fis smooth and of maximal rank. Let C = Y
be a piecewise smooth cycle. Then it follows easily from the proof of Theorem 6.4 that we
may choose our multisections s, such that the restriction of f, to each simplex A, = s, 10)ger
is transversal to C.
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Finally we provelLemma 6.3} For each pe X the rank of £, 1s independent of representa-
tives. We denote it n,. We put

X, ={peX|n,>k}.

It is easy to see that X, is a closed set. By compactness of X, there exists k¢, such that the
set X, is empty for k > ko. We are going to construct a covering |, =« Upep,¥r.p57.5(0) 2 X,
by downward induction on k.

Namely we assume that we have a covering (J; = x+1 Upep, ¥r.p57.2(0) 2 Xj 11 with the
properties (6.14) below and will construct {J, » & {pep, ¥ pS7.2(0) 2 X, with the same prop-
erties (6.14). Hereafter, we write|U, , = Y, ,5,., (0)| We remark that U, , is an open subset
of X.

(6.14.1) Py S Xy — Xesy.
(6.142) (U;,, E,,s,) is a representative of coordinate chart around p.
(6.14.3) Conditions (6.1.2)-(6.1.5) are satisfied. — Ln PW“T(C(AIQY’ COCyC& (6 1Y)
(6.144) ) | U, =X, is a subdivision of the given covering of X.

4=k peP;

We recall that our space X is a metric space. Let d denote the metric. We put
D(X;,r)={xeX|d(x, X;)<r}
D,(r)={xe X |d(p, x) <r}.
We have positive number ¢; > 0 such that

D(Xj+1,81) S U Ul_]/.p' (6.15)

¢ 2zk+1 peP,

We choose a representative of coordinate chart (Ulﬁl), E,,s,) around pe X; — X;4,.
We assume

(6.16.1) TN Xyhy =0. @ L'{;mﬁruélwéaﬂwraedﬁ:xcol(qu-
(6.16.2) Each of U{" is contained in a mg#iber of the given covering. for eath q ,qt eQ that
We take a finite set 0 } S X, — D(X¢s 1. ¢1/2) such that e defined ot 743! (p)
e take a finite set Q = {qq, ..., ¢} S X} — +1,€1/2) such tha
finite set @ = Mo S K= D &1 Whtnever £.,-bal arowd p

D(Xy+1,6/20 | OV 2 X,. is containgd in Pm'lf,’nhn%l ;

q€Q

he only have 9@1:’”5 of Gyg
and OnZy for gemg,
(6.17) If x € Xy, d(x, Xy+1) > €1/2 — &,, then there exists g € Q such that D,(s,) = U". So that sem <

tmpossibé to

We next take ¢ and an open subset U, of U, for each p € {J,> F, such that uarmﬁe&
a ';Vt'ori.

We can then find ¢, > 0 such that ¢, < ¢;/100 and that

(6.18.1) If xe U, then D,(e3) = U,.
(6182) U/’>k UpePtl]p, 2D(Xk+1,81/2).

Here we put U, = ¥,(s, "(0)nUj).
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We put ¢, = min(e,, &3} /100. Now for each p € X, — X, we take a representative of

coordinate chart (U, E,, s,) around p such that uncpun{né%man}l
same U for a g
(6.19.1) Diam U, < &. K (possible. stice Q Fumite?)

(6.19.2) If D,(es) = U" for some g € Q, then there exists a representative of ¢ ,: U, > UV
defined on U, and also there exists ¢ , defined on E,,.
(6.19.3) If D,(eq) = U, for some gel),»4P, then there exists a representative of
©qp: U, = U, defined on U, and also there exists ¢, defined on E,,.
(6.19.4) Compatibility conditions (5.3.2) and (3.3.3) are satisfied as equalities between maps 2

(not only as map germs). COCYCZ@ COhdt"ﬁon -?or Wh (‘.Gh h’lﬂ! PI ,Pz.Pz
o,.a/ seems bo mahe songe to ask for Ppgo Go = by
but even Yot vequires £ixed chotces —see &) atee

We take a finite set P, such that

D(Xi+ 1, 21/2)0\ pep, Uy 2 X, (6.20) Qnd.
belovy for .
Replacing P, by a subset we may assume that Cocy& Conl—
P Xy — D(Xy11,61/2 — &3). (6.21)
Now we are going to prove that (U,, E,, s,), p € Pyand (U,, E,, s,,), p € P,, / > k has the
required properties. We put the order on the set { ), P, such that g < p if n, <n,,.
Now we consider p;, p, such that U, nP,, # 0 (or U, nU,, #0 or U, nU,, # ) and
p2 < p1. We are going to construct Uy, ., @p, p,: Up, p, = Up,s ®p,p,  Ep,lu, , = Ep,. In case
D1, P2 € s>i P, our charts are restrictions of the charts we constructed in earlier steps.
Hence we can use induction hypothesis to obtain U, , .0, ,.:U, ,, = U, 0, p.:
Ep |y, — E,, satisfying required properties. Up, /Upz < /UPJ
Hence we need to consider the two cases, n, =n,, =k, n,, =k <n, . \>Uq.z $ an
tolea for cocycle condttion : \\>U &
Case 1: n, = n, = k. In this case by (6.21) we have d(py, X, ) > &1/2 — &5, i =1,2. "3
Since U, nU,, # 0 (6.19.1) implies d(py, p,) < 2e4. It follows from {6.17) that there exists mex esks
qeQ such that D,(e,) < U, i=1,2. Thus by (6.19.2) there exists a representative aucto
: 1) . 1) A : . wtomatic., 2
Oap, - Up, = U, 0gp,: Uy, = Uy, We have also @y),,, @p,. Since n, \=n,, = n,, they are /-

diffeomorpisms of orbifolds to its image. We put U, ,, = (Pq_pi Oap (Up\ Op,p, = (pq_p} Pap, >

Ppips = Pap: Pap,- It is straightforward to verify the required properties.

Case 2: n, =k <n,, . In this case (6.18.1) implies D, (¢4) = U, . Therefore by MW£' if P;¢Q?’
there exists a representative ¢, ,,: U,, = U, . We remark that U, is an open subset of U, .
Hence we put U, ,, = ¢,,5,(U,,), and restrict ¢, ., &,, », there. The required properties are

Immediate. A M to W sure Gﬂqqi weall Fixed

The proof of Lemma 6.3 is now complete. (. in m dont OF P)
/7

oletired. on Lasge erough domains
CIAPTER 2 MODULTSPACE OF STRBLE VAP~ and. safist C“y‘& .
Lhis from

Undear how to get

7. STABLE MAPS germs

We first recall the notion of stable map due to Kontsevich [38, 39]. Let (M, w) be
a symplectic manifold and J:TM — TM be a compatible almost complex structure. Let
g and m be nonnegative integers. (We remark that for some of the definitions of this section
we do not need symplectic structure but only an almost complex structure. However, to
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establish compactness of moduli space, we need to assume that there 1s a symplectic
structure. So we restrict ourselves to the case of symplectic manifolds.)

Definition 7.1 ( Mumford [49]). A semistable curve with m marked points is a pair (Z, z)
ofaspace X = (Jny (Z,) where Z, is a Riemann surface and y : X, — X is a continuous map,
and z =(zy, ..., z,) are m points in £ with the following properties.

(7.1.1) For each pe X, there exists a neighborhood of it such that the restriction of
Ty, X, — X to this set is a homeomorphism to its image.

(7.1.2) For each pe X, we have ) #ms '(p) < 2. Here and hereafter # means the order
of the set.

(71.3) ¥ #ms '(z;) =1 for each z;.

(7.1.4) X is connected.

(7.1.5) z; #z;fori#j.

(7.1.6) The number of Riemann surfaces X, is finite.

(7.1.7) The set {p|y #ns.'(p) = 2} is of finite order.

We say a point p € X, is singular if ), # n{vl(nzv(p)) = 2. We say that p € X, is marked if

iy (p) = z; for some j. We say that X, 18 a component of X.
A map $:ZX 2% between two semistable curves is called as isomorphism if it is
homeomorphism and if it can be lifted to biholomorphic isomorphisms 9, :X, — X,

for each component X, of X. If £ X have marked points (zq, ..., zn), (21, ..., Zm)
then we require 3(z;) = z; also. Let Aut(Z, z) be the group of all automorphisms of
(Z, 2).

We next define the genus of a semistable curve X = ( JZ,. For each £ = U, we associate
a graph Ty as follows. The vertices of Ty correspond to the components of £ and we join two
vertices by an edge if the corresponding components intersect each other in . We also add
an edge joining the same vertex corresponding to X, for each point pe X such that
# 7y ' (p) = 2. The graph Ty is connected since X is connected.

Definition 7.2. The genus g of a semistable curve X is defined by

g =).gy+ rank H(Ty:Q),

where g, is the genus of X,.

Definition 7.3. A map h:X — M is said to be a pseudoholomorphic map if it is continuous
and if the composition hony : X, - M is pseudoholomorphic for each v.

he([Z]) =) (hom,),[2,]€ Hy(M;Z).

v

Definition 7.4. A pair ((Z,z),h) of a semistable curve with m-marked points and a
pseudoholomorphic map h:X — M is said to be stable if for each v one of the following
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conditions holds.

(74.1) homy :X,— M is not a constant map.
(74.2) Let m, be the number of points on X, which are singular or marked. Then
m, + 2¢g, = 3.

Definition 7.5. Let ((Z, z), h) be a pair of a semistable curve with m-marked points and
a pseudoholomorphic map h:X — M. We put

Aut(Z. 2). 1) = {9:2 oy ‘ 3 is an automorphlsm}.

hoS=h

We call it the automorphism group of ((Z, z), h).
Lemma 7.6. ((Z, z),h) is stable if and only if Aut((Z, z), h)) is a finite group.

Proof. This is an observation by Kontsevich and Manin. We prove only that if (%, z), h)
is stable then Aut(((Z, z), h)) is a finite group. {We use this part only.) We first remark that the
subgroup of Aut(((Z, z), h)) consisting of $:X — X such that Iry (X,) = 7y (X,) 1s of finite
index. Hence it suffices to show that this subgroup is finite. We then find that it suffices to
show that the following group is finite for each v.

SV:EV—>Z‘, hOﬂZ"ogv = hOTCZV

{ 3,(p) = p, for each singular or marked point p}
3, is biholomorphic

If(7.4.2) is satisfied, then the set of all holomorphic automorphisms which fix all singular
or marked points is finite.

If (7.4.1) is satisfied, then the set of all holomorphic isomorphisms &, satisfying
homyg o8, = homy is finite. ]

Definition 7.7. Let p € H,(M;Z). We consider the set of all stable maps ((Z, z), h) such
that (%, z) is of genus g with m marked points and h.([X]) = f. We divide it by the
equivalence relation ~ such that (X, ) ~ (%, ') if and only if there exists an isomorphism
$:(Z, ) - (X, 7) satisfying i - = h. We let[C,%ﬂ,m(M, J, p) be the quotientl We call it the
moduli space of stable maps of genus g, m marked points and of homology class p.

We also put, for a positive number A,

C'ﬂysm(M’ J) = U C’%g,m(Ms Ja ﬂ)
B

CllynM, 0, ;< A) =" \J  Clyn(M,J, )

[Blro < A

(We remark that C.#, ,(M,J,p) and C.4, (M, J) are independent of the symplectic
structure . Also we can make the definition of C.#, ,(M, w, J; < A) independent of the
symplectic structure by using the area of the map in place of [f]1nw < A. However, the

study of these moduli spaces has an interesting application only in symplectic case.
Hereafter, we do not mention these kinds of remarks.)

From now on, we identify ((Z, z), h) with its isomorphism class by abuse of notation,
when no confusion can occur.
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Definition 7.8. A semistable curve (Z, z) with m-marked points is called stable if (7.4.2)
holds for each component.

Let C.4,,,, be the set of all isomorphism classes of stable curves with m marked points
and of genus g. C.#,,,, is called the Deligne— Mumford compactification of the moduli space
of curves. It is well known that C.#, ,, has a structure of complex orbifold of (complex)
dimension 3g — 3 + m. (See also Section 9.)

The case g = 1, m = 0 is exceptional. In that case the moduli space of elliptic curves
(with no marked point) is the quotient of upper half-plain by PSL(2, Z). The quotient space
is an orbifold and is homeomorphic to S$? minus one point. We compactify it by adding
a semistable curve of genus 1 which has one singular point and one irreducible component.
We denote this compactification (which is homeomorphic to §?) by C.#; ,. We remark that
elements of C.#, o are not stable in the sense above. So in this case the definition of C.#;
is different to the usual case.

We remark that in Definition 7.8 we assume 3g — 3 + m > 0 and otherwise the set
C.AM, ., 1s empty. However, in Definition 7.4 (the definition of stable map) we do not assume
3g — 3+ m > 0. We will give some additional remarks on the case 3g — 3 + m < 0 at the
end of Section 17.

Definition 7.9. Let (X, 7) be a semistable curve with marked points. We say that its
component X, is stable if 2¢g, + m, > 3 and we say that it is unstable otherwise.

We define a map n:C.4, (M, J, ) —> CM,,, in case 29 —3 + m > 0 as follows. Let
(2,2, he Cly (M, J, ). We shrink 7y (X,) to one point in X for each unstable compon-
ent X, of £ and obtain X". Then, we can easily find that X’ together with the composition
s : X, = 2 — X' for stable components is a stable curve of genus g and of m marked points.
We let this stable curve n{(%, z), h).

In the case when g = 1, m = 0 we define n:C.#; (M, J, f) > CAy  as follows. Let
(Z,h)e Cy o(M, J, p). If there is an irreducible component X, of X such that g, = 1 then
we put n(X, z) = [Z,]. We remark that the component X, of £ with g, = 1 is unique if it
exists. If there is no component X, of £ with g, = 1, we define n(Z, h) to be the unique point
in Clly,g— M.

We also define a map ev:.#, (M, J, f) - M™ by

ev((Z,2), h) = (h(zy), ..., h(z)).

Now the main results we are going to prove in Chapters 2 and 3 are the following.

&— the compactified modul; spoce. (see abore)
Tueorem 7.10. C.#, (M, J, ) has a Kuranishi structure of dimension 2m + 2 ¢,(M) +
2(3 — n)(g — 1) which is stably complex and is compact.

TueoreM 7.11. Let (U, E,, Sy, Wy, Qpg> Ppq) be the Kuranishi structure as in Theorem
7.10. Then there exist strongly smooth maps my ,:U,— Cil,, if 3g+m=3 and
ev,: U, —» M™ if m > 0 with the following properties.

TI1.D) w40 gy =7,, and ev o @,, = ev,,.
(7.11.2)  mpr,(x) = m,(x), and ev(i,(x)) = ev,(x) for every x with s,(x) = 0.
(711.3) 7w, xev, is of maximal rank if 3g + m = 3, and ev,: U, - M™ is of maximal rank

if m > 0.
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We can prove a tamily version of them. Namely we have a similar moduli space with
Kuranishi structure when we move  and J in a finite-dimensional family. This generaliz-
ation is straightforward so we do not state it. A more interesting problem is to study the case
when we consider a family of complex or symplectic structures which is degenerate at some
point.

We give an example of Kuranishi structure on the moduli space of pseudoholomorphic
curves.

Example 7.12. Let n: M — S be an elliptic surface. (Here S is a Riemann surface.) We
assume that 7:M — S has no singular fiber other than multiple fibers. Let 7~ (p;),
i=1,...,7 be the multiple fibers with multiplicity n;. We regard S as an orbifold by
regarding p; as a singular point which has a local chart RZ/Z,I,_. Let pe Hy(H;Z) be the
homology class of general fibre. We consider the moduli space C.# o( M, J, p) of genus 1
Riemann surfaces representing 5. This space consists of the following components.

(713.1) S.

(7.13.2) Finitely many points, each of them corresponding to a map & to a multiple
fibre 7= 4(p;), i=1,....7, h:T* >~ 1(p;) is an n;-fold covering map, but is
not deformable to a map to a regular fiber. (Among the n;-fold covering maps
T2 — 1~ (p;), only one of them is deformed to a map to a regular fiber.)

The virtual dimension of C.#; (M, J, ) is 0. So we have an obstruction bundle.
We can describe the obstruction bundle E on the component S as follows. First we
remark that by definition

E.=H Y(n Yx), Ny 1 oyM) = H*Y " (x)) ® T,S.

If x € S is a regular point. Hence we can show that E as an orbibundle is isomorphic to the
tensor product H*!(n~1(x)) ® TS. (Here H%!(z~(x)) is an orbibundle over S whose fiber
at xe S is H>Y(n~1(x)).)

We can prove that the bundle H(z~1(x)) is flat in the following way.

First, we claim that the holomorphic structure of the regular fiber is constant. This fact is
well known and can be proved as follows. Let h/PSL(2;Z) be the moduli space of elliptic
curves. (Here b is the upper half-plain.) x > [n~!(x)] defines a holomorphic map
S—{pili=1,...,7} > b/PSL(2;Z). At the point p; corresponding to the multiple fiber, we
consider the covering space locally and can prove that S — {p;|i =1, ..., /} — h/PSL(2;Z)
extends to a holomorphic map S — h/PSL(2;Z). Using the fact that S is compact, we find

that this map is constant. Namely the complex structure of the regular fiber is constant.
Therefore the structure group of n: M — S is reduced to the group of biholomorphic
map of an elliptic curve. It is an extension of the torus by a finite group. The torus acts
trivially on H%*(z~1(x)). Hence the structure group of the orbibundle H%1(r ~ }(x)) is finite.
Thus we find that the Euler class of H>!(r~!(x)) ® T'S coincides with the Euler class
of TS.
Other components (which are of dimension 0) has isotropy group whose order is n;.
Thus the fundamental cycle (which is a rational number) is

p(n;) — 1

13

ﬂ&fi (7.14)

here p(n;) is the number of subgroup of Z? of index n; and y(S) is the orbifold Euler number
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We remark that S may be a bad orbifold. Namely 1t may not be a global quotient of
a manifold. (For example we start with the direct product S? x T2 and perform a logarith-
mic transformation.)

In the case when there is a singular fiber other than multiple fibers, it seems that a
formula similar to (7.14) holds. The authors did not check it yet.

8. FINITENESS OF THE NUMBER OF COMBINATORIAL TYPES OF STABLE MAPS

We start the proof of Theorem 7.10. First we need to define a topology on
CMy (M, J, p) and prove that it is compact. In this section, we prove that there are
only finitely many possibilities of the combinatorial types of elements of C.#, (M, J, )
(Proposition 8.8). The following lemma plays a basic role for it.

Lemma 8.1. For each (M, w, J), there exists 6 > 0 such that if h: X — M is a nonconstant
pseudoholomorphic map from a closed Riemann surface X to M, then

fh*w > 0.

{(We remark that Lemma 8.1 holds for almost complex manifold if we replace the assump-
tion {h*w > § by an assumption on the area. The same is true for Lemmata 8.2 and 8.12.
In this paper we use only the case of symplectic manifolds.) The lemma is an immediate
consequence of the following result due to [33], [53].

Lemma 8.2. There exists gy and C > 0 such that the following holds for each ¢ < ¢y and
each metric ball D,(¢) centered at p and of radius . Let h': X" — M be a pseudoholomorphic
map from a Riemann surface X' with (or without) boundary to M. Suppose h'(X') < D,(e),
hW(0X") = 0D,(¢) and p € h(X'). Then

f o> Ce
X

We next define the data parametrizing combinatorial types of stable curves of genus g,
with m marked points and of homology class € H,(M; Z). We consider a connected graph

(8.3.1) g,, a nonnegative integer for each vertex v of 7.
(8.3.2) P, e Hy(M; Z) for each vertex v of T.
(8.3.3) A map o:{l, ...,m} — {vertices of T}.

Let mark(v) be the number of j such that o{j) = v, let sing(v) be the number of edges
containing v. (We count twice the edges both of whose vertices are v.) We put
m, = mark(v) + sing(v). We assume that one of the following is satisfied for each vertex v
of T.

84.1) 29, +m, >
(842) p,#0.
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We assume also that

@5 Y.b =45

(8.6) Y,g,+rank H{(T;Q) =g.

(8.7) For each vertex v, there exists a pseudoholomorphic curve h: X — M from a Riemann
surface of genus ¢, such that h,([Z]) = p,.

We let Comb(g, m, p) denote the set of all (T, g,, f,, 0) satisfying these conditions.
For each element ((Z,z), h) € C. 4, ,(M, J, ), we find a unique element (7, g,, f,, 0) of
Comb(g, m, p) as follows. We take the graph T = T’ introduced in Section 7. Its vertex v is
identified to a component 2, of . Let g, be the genus of 2,. We put f, = (ho s ), ([Z,]). We
put o(i) = v if and only if z; € 7y (X,).

(8.4) is then a consequence of stability, (8.5) follows from h,([Z]) = p, (8.6) is equivalent
to the fact that the genus of X is g. (8.7) holds because heny is a required pseudoholo-
morphic map. equl valomee classes 0“'&

Welet C.#, (M, J, BT, g, B, 0) be the set of alllstable maps which induce the element
(T, gy, Py, 0) of Comb(g, m, ). This gives a stratification of C.#, (M, J, f). We now use
Lemma 8.1 to show the following:

ProrosiTioN 8.8. For each A, the set |z, < 4 Comb(g, m, B) is finite.

Proof. Let 6 be as in Lemma 8.1. We put K = A/5. Let  be the number of vertices and
let S =Y g,. We remark:

(8.9.1) By (8.6) the number of vertices v with g, > 1 is smaller than g.

(8.9.2) There exists at most m vertices v such that mark(v) > 0.

(8.9.3) By Lemma 8.1, (8.5), and (8.7), there exist at most K vertices v with 5, # 0.

(8.9.4) By (8.6) the number of vertices v such that there exists an edge e both of whose
vertex is v is smaller than g.

Let o be the set of all vertices v satisfying one of (8.9.1), (8.9.2), (8.9.3), (8.9.4). Then the
order of  is smaller than K + m + 2g.

Let v be a vertex which is not contained in . Then g, = 0, mark(v) =0, 5, = 0. Hence
sing(v) = 3 by (8.4). Therefore, we have

< K +m+ 29 + #{v|sing(v) = 3}. (8.10)

By (8.6), y(T)=1—b(T) =S + 1 — g. On the other hand,

({vlsing(v) = 1} — {v]sing() > 3}).

1 1
2(T) = 52(2 — sing(v)) <5

28 + 2 — 2g + # {v|sing(v) = 3} <#{v|sing(v) = 1}.

# (Wlsing(1) = 1] < #(vg, > 0] +# (v]g, = 0.m, = 1] + # (v mark(y) = 1.
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Hence
28 +2 —2g +#{v|sing(v) =3} <g+ K +m. (8.11)

(8.10) and (8.11) imply 4 25 < 5¢g + 2K + 2m — 2. Proposition 8.8 follows from this
fact and the following:

Lemma 8.12. For each g, ¢, the set below is finite.

Jh:X, - M pseudoholomorphic
peHy(M; Z)|[w] h[E] <c

%, is a Riemann surface of genus g < gq

g

This lemma will be proved in Section 11.

Remark 8.13. We will use a part of Proposition 8.8 in Section 11. So we remark here that
we proved the following without using Lemma 8.12: Let (%, z), h) € C.4, (M, w, J), < A).
Then the number of irreducible components of (X, z) is smaller than a number depending
only on M, w, J, A.

9. DIFFERENTIAL GEOMETRIC DESCRIPTION OF DELIGNE - MUMFORD COMPACTIFICATION

In this section, we study the compactified moduli space C.#, ,, of Riemann surfaces of
genus g and with m marked points. Our purpose is to define a topology (and orbifold
structure) on it. We also define a family of Riemann metrics on stable curves parametrized
by C.4,,,,. (Here Riemann metric on stable curve means Riemann metric on each compon-
ent.) Our metric is flat in a neighborhood of singular points.

The space C.#,, ,, 1s well studied from various points of view, and the discussion we will
give in this section is not really new. However, we will give those descriptions since a similar
construction is necessary to construct the charts of Kuranishi structure of our moduli space
in later sections. We also want to make the exposition as elementary as possible and to
avoid using deep and difficult results of algebraic geometry (though many of the arguments

in principle are borrowed from algebraic geometry). To avoid using algebraic geometry
may be appropriate to work in the category of symplectic manifold with compatible almost
complex structure. Compare our description with [11] or [50] where various other
techniques (Cohen-Macaulay scheme, stack, etc.) are used. However, we skip some part of
the proof since this section is mainly of expository nature.

We first define a stratification of C.#, ,,. It is indexed by a set Comb(g, m) which is
similar to the one we used in Section 8. We consider a connected graph T together with the
following data.

(9.1.1) y,, a nonnegative integer for each vertex v of T
(9.1.2) A map o:{1, ...,m} - {vertices of T}.

Let mark(v) be the number of j such that o{j) = v, let sing(v) be the number of edges
containing v. {(We count twice the edges both of whose vertices are v.) We put
m, = mark(v) + sing(v). We assume

29, + m, = 3. 9.2)
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We also assume
Y. gy +rank H(T;Q) = g. (9.3)

Let Comb(y, m) be the set of all such objects (T, (g,), 0). In fact, Comb(g, m) coincides to
Comb(g, m, p) if we put = 0. Therefore, Comb(g, m) is finite by Proposition 8.8. (We do not
need Lemma 8.12 to prove it in this case.)

For each element (Z, z) of C.#,, ,,, we associate an element of Comb(y, m) as follows. We
take the graph T = T as in Section 7. Each vertex v of T corresponds to a component X,
of Z. Let g, be the genus of X,. We put o(j) = vif z; € 7y (Z,). (9.2) is a consequence of the
stability and (9.3) is the definition of the genus.

Let 4, (T, (g,), 0) be the set of all (Z, z) such that the associated object is (7, (g,), 0).

Using the fact that the automorphism group of each element of C.#, ,, is of finite order,
it is rather easy to find a structure of orbifold on each stratum .#, ,,(T, (g,), 0). So we omit
it. We also remark that there exists a fiber bundle (in the sense of orbifold)
UN Iy ulT,(g,), 0) = M, (T, (g,), 0) together with the complex structure on each fiber
such that the fiber of (Z, z) is identified to (Z, z) itself.

More precisely for each x e .#,.(T,(g,),0) there exists a chart U,= /T, of it
and an action of I', on X, such that the inverse image of U, in %NS, ,(T,(g,).0)
is difftomorphic to ,xX,/I'.. We need to require compatibility condition for these
charts «x2Z /Ty so that it will define a fiber bundle structure on
UN Iy (T, (gy), 0) = My (T, (g,), 0). We omit the definition since it is almost the same as
one we gave in the case of vector bundle.

It is more delicate to see how those strata are patched. We are going to describe it. Also
we define a smooth family of metrics of each fiber of % A", (T, (g,), 0) = My (T, (g,), 0).

The construction is by induction on the stratum. We first define a partial order > on the
set Comb(g, m).

Let (T,{g,), 0) € Comb(g, m). We consider (T,, (g,.,), 0,) € Comb(g,, m,) for some of

the vertices v = vy, ...,v, of T. Here m, is the sum of number of the edges containing
v and the number of marked points on X,. (We count twice the edges both of whose vertices
are v.)

We now replace the vertex v by the graph T',. We join the edge containing v to the vertex
0,(j) where j e {1, ... ,m,} is the suffix corresponding to this edge. We then obtain T. The
number ¢, is determined from ¢, and ¢, ,, in an obvious way. We determine ¢ as follows.
Ifo(j) #v,,i= 1, ...,a,then 6(j) = o(})). If o{j) = v; then the jth marked point corresponds
to some of je{l,...,m,}. We then put 6(j)=o0,(j). We thus obtain an element
(T, (g,), 6) € Comb(g, m).

We write (T, (g,), 0) > (T, (). 0) if (T, (§,), 0) is obtained from (T, (g,), 0) as above.

We are going to define a topology of C.#,,, so that the closure of .Z, .(T,(g,), 0)
contains .#, (T, (g,), 6) if and only if (T, (g,), 0) > (T, (g,), 9).

We construct a basis of neighborhood of each element of .%,,(T,(g,), 0) by the
induction with respect to <.

For the first step, we remark that (7T, (g,), 0) is minimal if the following holds.

(941) g, =0 for each v.
(9.4.2) m, = 3 for each v.

In that case, the stratum .#, ,,(T,(g,), o) consists of one point (X, z). We take and fix
a Kéahler metric on each component of this unique element (which is a sphere). We remark
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that the group of automorphisms of this unique element of .#, ,,(T, (g9,), 0) may be non-
trivial. In the case when it is nontrivial, we choose our Kéhler metric so that it is invariant
by the action of this group.

We next construct a neighborhood of (£, z) in C.#, ,, together with a family of metrics
on each element in this neighborhood.

Let x € ny (x,) = 7y (x,,) be a singular point of Z. (In fact it may happen that v = w. We
use the same notation in this case for simplicity.) We take the hermitian metric on 7, X, and
T, X, induced by the Kihler metric on X, and X,,. They induce one on the tensor product
T.2,® T, Z,. For each nonzero element € T, %, ® T, X,,, we have a biholomorphic
map ®,: 7, X, — {0} — T, X, — {0} such that

u® o, (u) =a.

Let |of =R™2 and assume that R is sufficiently large. Let exp,:T,XZ,—>X,,
expy,: Ty, X, = X,, be the exponential maps with respect to the Kihler metrics we have
chosen. (We recall that our metricis flat in a neighborhood of singular point. Hence, exp, is
an isometry in a neighborhood of origin.)

We remove D, (R™*?) from X, and D, (R™*?) from Z,. Here D.(R™*?) denote the
metric ball of radius R™*? centered at x. (We assume that D, (R™*?) and D, (R™*?) are
both flat.)

If R is sufficiently large, then exps 'c®,°expy, is a diffeomorphism between
D, (R™'*) —~D,(R™*?% and D, (R™*?) — D, (R™*?). We glue T, and Z,, by this diffeo-
morphism. In case when o = 0, we do not make any change.

By performing this construction at each singular point, we obtain a 2-dimensional
“manifold” for each element

() e T, Z, QT X,

in a neighborhood of 0. (Here the sum is taken over all singular points x of Z.) It is singular
when some a, is 0.

We next define a metric of each “manifold” in this family and hence a complex structure
on it. We do not change the metric on the complement of D, (R™'?)in Z,.

Let us describe the metric we put on the part D, (R™'?) — D, (R™3/?),

Since our Kéhler metric is flat in a neighborhood of singular point, we may identify
D, (R™'?) with an open subset in C with standard metric. We then consider an isomor-
phism @, : z — a/z on it. The standard metric |dz|* will become |o/z2|? |dz|? by the pullback.
Hence if |2 = R™2, then ®¥|dz|* = |dz|* on the circle |z| = R™'. We choose a function
1r: (0, 0) = (0, oo) such that yx(|z|)|dz|? is invariant by ®,, and that yz(r) = 1if rR > 1 + &.
We choose such yr once and use it always. We perform the same construction on
D, (R™1?) — D, (R™*?). Then ®} (xx(|z|)|dz|*) = z&(|z])|dz|* implies that these two metrics
are compatible on the overlapping part and hence we have a metric.

originin @, T, X, ® T, X,. (In case some component is 0, the stable curve is singular.)
We recall that our element (Z, z) in C.#, ,, may have a nontrivial automorphism group
Aut(Z, z). Each of them acts by isometry. Hence it acts on @, T, X, ® T, Z,,. Furthermore,
since all the constructions are canonical {except the choice of yz which we may assume
to use the same one for all), it follows that, for each y € Aut(Z, z), the semistable curve

corresponding to (x)e @, T, X, ® T, X, and y(x,) are isometric to each other, with
a canonical isometry, which we write also by y. Thus we have a family of elements of C.#, ,,
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parametrized by a neighborhood of 0 in
DI ®T.Z,
Aut(Z, 7)

We take this neighborhood as a chart of C.#, ,, as an orbifold.
Thus we have constructed a neighborhood of each point in the first (smallest) stratum.
Also we have constructed a family of Riemann metrics on the element of the neighborhood.
Remark 9.5. In fact we need to prove that the map from a neighborhood of 0 in
OI®T.2,
Aut(Z, z)

to C.4,,» 1s injective to show that our map gives a chart. We skip the proof of this fact. One
can prove it without using algebraic geometry so much. See [ 30, Section 14] for the proof of
it in the case of real Riemann surface of genus 0. (The proof there can be generalized to the
present situation with minor change.)

Now we consider the induction step. We consider a stratum .#,, (T, (g,), 0). By induc-
tion hypothesis we have constructed a family of metrics of each element in the neighbor-
hood of .#,,.(T",(g,), 0') with (T",(g,), 0') <(T,(g,), 0). We here use the fact that the
complement of the union of such neighborhoods is compact. This is a nontrivial fact. But
again we omit the proof of this fact, since it is now a part of standard theory.

Let 4 .(T,(g,), 0) be a compact subset of .Z, (T, (g,), 0) which contains the comp-
lement of the union of the neighborhoods of .#, ,,(T", (¢), o') with (1", (g,), 0') <(T, (g,), 0).

We assume also by induction hypothesis that the metrics of the stable curves in the
neighborhoods of .#, (1", (g), 0') with (T, (g}), 0') <(T,(g,), 0) for various (T, (g,), 0')
coincides with each other on the overlapping part.

We next extend this family of metrics in any way, over all .Z, (T, (g,), 0). We then
obtain a smooth family of Kédhler metrics on the fibres % A".4, ,.(T, (9,), 0) = M, (T, (9,), 0).

We next are going to use this family to construct a neighborhood of %, (T, (g,), 0). We
first remark that we have an orbibundle over %, (T, (g,), 0) whose fiber is the direct sum
@, T2, ® T, X, over the singular points x. (D, T, X, ® T, X, consists of an orbibundle
and not a vector bundle since the automorphism group Aut(X,z) of elements of
Hym(T,(g,),0) acts on it.) The family of Kihler metrics on %A1, (T, (g,),0)—
Myw(T,(g,), 0) induces a hermitian metric on our orbibundle. Therefore we can perform
a parameterized version of the construction we did in the case of the first stratum, to obtain

neighborhood of 0 of our orbibundle @, 7, X, ® T, X,. We thus construct a neighbor-
hood of %, (T, (g,), 0). By construction, the family of metrics we obtained coincides with
the one we already constructed in earlier steps at the part where they overlap. This is

Thus we have constructed an orbifold structure on C.#, ,, together with a smooth
family of metrics on each fiber of #. NS, ,.(T.(g,), 0) = M, (T, (g,), 0).

10. TOPOLOGY ON THE MODULI SPACE OF STABLE MAPS

We are going to define a topology on our moduli space C.#, ,(M,J,p). The
definition of topology and the proof of the fact that C.#, (M, J, p) is compact is in
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principle due to Gromov [33]. Also there are papers by Pansu [53], Parker—Wolfson [54]
and Ye [74] related to the same topic. However, we give a proof of them here since there
seems to be some confusion on the way to use the word “stable map”, “cusp curve”, etc.
Also a part of the argument of the proof will be used in later sections.

The topology is defined in a similar way to the case of C.#, ,, we discussed in Section 9.
One trouble however is that for a stable map ((Z, z),h) the semistable curve (£, z) may not be
stable. Therefore there may be some trouble to fix a representative of (X, z). (Namely there
is an ambiguity controlled by a group of positive dimension (which is noncompact in many
cases). In the discussion of Section 9 the ambiguity was just a finite group.)

We again start with defining a partial order of the index set Comb(g, m, p) of the strata of

Mym(M, J, B). Let (T,g,,p,,0)e Comb(g,m, f). We consider (T,,(gyw) Pvw>0)€
Comb(yg,, m,, p,) for some of the vertices v =vq, ...,v, of T. We replace the vertex v by
(T, (Gy.v)» Bye> 0,) in @ way similar to that in Section 9 and we obtain (T, g, B, 6). We then
define (T, g,, B, 0) (T, §,. B.. ).

In later sections, we are going to define Kuranishi structure by induction of this
relation <. In this section we only define a topology.

We first consider the case when (Z, z) is stable.

Let E(Zn, [N/} :’e Cllyn(M,J, p) be a sequence, and assume that (X,,z,) e C.#4,

A g Y namely we assume that they are stable. We assume that
t

o 8

n—w

i w,,dof Wh@v. lim (Z,, z,) = (%,2)

in C.A4,,, by the topology we defined in Section 9. Let £ = [ J, X, be the decomposition of
2 into irreducible components. (We write X, in place of ny (X,) for simplicity.) We assume
that X e .#, (T, (g,), 0). Then by the definition of the topology in Section 9 we find

= hEn€ My T, (g)),0) and (o) e @ T, X, ® Ty, X, in a neighborhood of 0

such that (X, z,) € C.#4,, ,, corresponds to the element (x, ) € @, T, X\, ® Ty, X\, by the
chart of C.#, ,, we constructed in Section 9. We also have lim,, ,, 2, =0 and
lim (%}, z,) = (%, 2). (10.1)

n—aw

We put R, , = |2, % By the definition of Section 9, T, has a subset identified to
2, — Us,,Dx,, (R, 2%) and that the diameter of the complement %, — (), — s, , D, (R, 2%)
converges to 0. By (10.1) we may identify %] — wava’”(R,Zi/z) to a subset of E We put

Wx, n(:u) = (Dx‘,,,,(li) - Dx‘,,,, (R;;))U(Dx“,,(:“) - wa,,,(Rr:i )

Using these identifications, we define

Definition 10.2. We say lim, ., ,((Z,, z,).h,) = (Z, 2), h), if the following holds.

(10.2.1) For each u> 0, the restriction of h, to X, — W, (1) converges to h in C*

(10.2.2) lim,_qlimsup,- ., Diam{h, (W, (1)) = 0 for any singular point x.

Now we consider the general case. Because of the problem of instability we mentioned
before, we use a trick to add marked points to make the semistable curve stable. Let

Jorgety: C-llymsy(M. J. B)o = C-tly (M. J. )
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be the map which forgets the marked points z,.i, ...,z,+,. Here we denote by
CMymsn(M, J, B)o the set of all elements of C.#, ,,+,(M, J, f) which remain stable maps
after forgetting marked points z,, 41, «.. , Zm+y-

Definition 10.3. We say lim,_ ,((Z,. z,).h,) = (Z, z), h), if there exist #, (Z,, z,), h) ",
(Z,2, )" € Clly ppsn(M, J, B)o such that

(10.3.1)  forget,(Zy, 2u) 1) ") = (0, 2a)s Ba), forget, (X, 2), h)7) = (Z, 2), h).
(10.32) (Z,.z,)" and (Z,7)" are stable.
(10.3.3)  1ims, -, (T, 20), 1) ™ = (X, 2), 1) ™.

It is easy to see that this defines a topology on C.%, ,.(M, J, p).
Lemma 104. C.4y,, (M, J, B) with this topology is Hausdorff.

Proof. Let lim,., .(Z,, z,), h,) =(Z, 2), h), lim,_, (Z,, 2,), h,) = (£, ), '). We need to
show that ((%, z), h) is isomorphic to (X', 7'), I).

Let (Z0 7)), (B2 h)e Cllymey(M, J, Blos and (Zn,2,7) )y (5,2 7), ) €
C My msy(M, J, B)o as in Definition 10.3. By perturbing the points we add, we may assume
that z, nz," = z,. (Namely the points we add are different from each other.) We put
z, Uz, =2z, . Hence we obtain a sequence ((X,, z, "), h,) € Clly sy (M, J, B)o. By tak-
ing a subsequence and adding more marked points if necessary, we may assume that it
converges to an element of C.4#y 4+ +n(M, J, B)o in the sense of lims, - ., . This is the most
essential point of the proof. We will prove it in the next section, where we prove the
compactness of C.#, (M, J, ).

Let lims, _, ., (Z,. z» ), h,) = (X", 2" "), h"). Then it is easy to see that both ((Z, z), h) and
(X', 7)), i) are obtained from (X", z” ¥), h”) by forgetting # + 1’ + 1" points we add. Hence
(X, 2), h) is ismorphic to (X', ), /') as required. O

At the end of this section, we give examples illustrating the definition of the topology.

Example 10.5. We consider two CP’s in CP2. Suppose that one of them X, is of degree
2 and the other X, is of degree 1. In the generic case, they intersect each other at two
different points, say x, y. We put two marked points (one for each) on these curves. It defines
an element of C.#; ,(CP? 3). We consider a sequence (Z,, z,, h,) of them such that
lim,, ,, d(x,, y,) = 0. (Here x,, v, are the points where these two curves intersect).

Geometrically the limit may look like of two CP'’s which intersect at one point with
multiplicity 2. However such an object is not a stable map of genus 1 in our sense.

The trouble is that if we forget the map, then union of two CP'’s intersecting at two
points and one marked point on each component has unique complex structure. Hence if we
forget the map, the limit should be the same stable curve. However there is no map from this
stable curve, whose image is the union of two CP'’s intersecting at one point.

The reason why we meet this trouble is that the limit is the union of two CP's
intersecting at one point and one marked point on each component and is unstable.
So we proceed as follows to find the limit. We add two additional marked points

Zy.m» Z4., ONE to each component so that h,(zs,), h,(z4, converges in CP% Let
2 =(Z1.m> Z2.n> Z3.n> Z4.n)- We consider the limit (X,,, z,7) in the Deligne-Mumford compac-
tification and find that the limit consists of 4CP%s, X, ..., %, such that #(Z;nX;) = 1,
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#(ZonZy) = 1, #(Z3nZy) = 2. We let T, be mapped to the first CP! and X, to the second
CP! and T,UZ, to the unique point lim,_, ,, X, = lim, ., v,. We then obtain a stable map in
our sense.

Example 10.6. Let CP},, i=0, ...,N, be CP! in, say CP®>. We may assume that
CP} ,nCP}!,={x;,} while CP!,nCP},=0 if 0<i<j We may assume also that
lim,_, ., x; , = x and is independent of i. The limit in naive sense is a union of N + 1 CP"s
intersecting at one point x.

To obtain the limit as a stable map we proceed as follows. We first add 2 marked points
to each of CP},. Then CP} , has N singular points and two marked points on it. The limit of
CP! with N singular points converging to the same point x and two marked points, is a tree
of CPYs. The type of tree depends on the speed of the convergence lim,_, ,,x; , = x. (This is
related to the compactification of configuration space. However, our case is an easy case
since we are dealing with the case of Riemann surface.) Therefore what we get as a limit is
a tree of CPY’s which is mapped to x except N + 1 components.

Example 10.7. (This example is already known to Ruan-Tian [60].) Let us consider
a family of tori T? in CP? converging to a singular curve homeomorphic to S%. We assume
that the complex structures of T2 remains in a compact subset of the moduli space .#_,.
This gives a sequence of elements in C.#; o(CP?, 3).

We may regard the limit as the map from a union of T2 and CP! where the map is
degenerate on T2

11. COMPACTNESS OF THE MODULI SPACE OF STABLE MAPS

In this section, we are going to show the following:
Tueorem 11.1. C#,, (M, w), J, < A) is compact.

We remark that Lemma 8.12 is an immediate consequence of Theorem 11.1. We use the
following lemma in the proof.

LemMA 11.2. There exists ¢, independent of L and depending only on M with the
following properties. If h:[—L, L1xS*— (M, w,J) is a pseudoholomorphic map and if
Diam (W[ —L, L] x SY)) < &y, then

— iy Al —
gce dist(t,d[ L,LD.

oh oh
‘E(Ts t) + ‘E(Ts t)

for te[ — L + 1, L — 1]. Here C is a constant independent of L and (t,t)e[ — L, L] x S*.
(We identify St = R/2nZ.)

This [emma probably 1s not new. For the convenience of the reader, we will give a proot
in Section 14. We rewrite the Lemma 11.2 using polar coordinate z = ¢* ¥ and obtain the
following Lemma 11.2". We put

Annu(r,R) = {zeC|r <|z| < R%.
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LeEmMA 11.2". There exists ¢, independent of r and depending only on M with the follow-
ing properties. If h:Annu(r,1)—>(M,w,J) is a pseudoholomorphic map and if
Diam{h{Annu(r, 1))) < &, then

r
< Cmax l, W

forlogze[logr + 1, — 1]. Here C is a constant independent of r and z.

’ah

oh
7z (z) ‘ + ‘ 8_2_(2)

Proof of Theorem 11.1. LetK(Z,,, Zn)s h,,)]e Cll 4 (M, m), J, < A) be a sequence. We are
going to find its converging subsequence.
!Eiet (X, zo), h) € My (M, J, B1), (T s Guv» Pu.vs 05). Since we have already proved in
W&a‘ﬁcs % Section § that there are only a finite number of possibilities of (T',, ¢,.+, 0,), if follows that we
may assume that (T, ¢,.,, 0,) = (T, g,, 0) is independent of n, by taking a subsequence if
necessary. (As we remarked in Remark 8.13, we need Lemma 8.12 in the proof of Proposi-
tion 8.8 only to show the finiteness of the possibilities of f5, ,.) Therefore we can add a finite
number of additional marked points to (Z,, z,) (whose number is independent of n) and
obtain (Z,, z; ) which is stable. (Hereafter we replace (Z,, z, ) several times by adding more
and more marked points.) By taking a subsequence and by using compactness of
Deligne-Mumford compactification, we may assume that (Z,, z, ) converges to (2., z5) in
Clly ., Let 2, = Uvzw,v be the decomposition into irreducible components. By the
description of Deligne-Mumford compactification in Section 9, we have

X =UZ., and ()@ T, Z..Q T, I,

(here x,, runs over singular points of X,) such that (Z,, z,”) belongs to the same stratum as
(., z5), and that (Z,, z;) is obtained from (Z,, z,7) by resolving the singularity using the
parameter (a, ) as in Section 9.

Also (%, z,7) converges to (2, z3,) in C*-topology and («, ) converges to 0.

By the definition in Section 9, X, has a subset identified to X, — Ux‘. Dy (R, 3/2), which
we denote by the same symbol. We find that the symplectic volume of the restriction of h, is
uniformly bounded. Let u > 0 be a sufficiently small number.

PropositioN 11.3. By increasing the number of marked points and by taking a subsequence
if necessary, we may assume that

sup  |Vh,| <
- U De )

Proof. The idea of the proof is simple. If | Vi, | diverges then we add two marked points
whose distance in T, is something like | VA, |~ . Then we have an additional component CP!
where the map is nontrivial in the limit. Such a process should stop after finitely many

repetitions since each pseudoholomorphic CP! has mass greater than § by Lemma 8.1. To
work out this idea one needs several technicalities.

Let ¢; be as in Lemma 11.2 and let x4 > 0 be a sufficiently small positive number. By
taking a subsequence, we may assume that, for each v, either

Diam h, <2;1,v - U ny_”(,u)> > ﬁ

Xy wEXy
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tor every n or

Diam h — D,
(.= U, 9-.0) <55
for every n. We may assume also that for each j,, j,, either dist(h,(z,, ; ), h.(z, ;,)) = €1/1000
for every n or dist(h.(z,, ;,), ha(za,;,)) < €1/100 for every n. (Here we recall that z, ; is the jth
marked point of (£, z,).)

We put

(E 2) hy) = {V

Diam hn( — D, (,u)> 1000}

n, ji° Zy, J» EZ; v diSt(hn(Zn,jl)a hn(Zn,jz)) > L}

dj(.7 h that
J1-]2 SUC at z 1000

,%((2"3 z: )3 hn) = {v e ’%i

The right-hand sides of these definitions are independent of n. So this set is defined from the
sequence ((Z,, z, ), h,). We furthermore define

V(20 20 ), h) = {v €71

limsup  sup |Vh,| <o }

n—o I~ Ds,

We remark that Lemma 8.10 implies that if ve #;((Z,., z, ), h,) then

j h*w > cei.
%, .~ Dy

Hence the order of 77 is uniformly bounded.

Lemma 11.4. Suppose there exists p,eX, — va‘”va_"(,u) such that |Vh,|(p,) goes to
infinity. Then we can take a subsequence and add marked points to obtain (Z,, z, *) such that

# VU0 20 ) ) < #7020 7). i)
or

#7110, 20 ) ) = #71(Z0, 20 7). i)

# Y (Zns % ), ) < #V2(Zs 20 ), )
or

# VU0 20 ) 1) = # V(20 20 7), hi)

#2(Zn 2 ) 1) = #7520 20 7). i)

#93(Zns 20 ) 1) < #7520 20 ) ).

Proposition 11.3 will follow immediately from Lemma 11.4.
For the proof of Lemma 11.4, we put

sup  [Vh,| = C,,

=D, (1)

And let |Vh,|(p,) = C,, where p,e X, , — |, D (1)
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We first consider the case when bubble happens away from the boundary. Namely
the case when |Vh,(p,)| dist(p,, (.., — va D, (1)) —co. We consider the composition
z > hy exp, (| Vh,|~'2). (Here we identify T, %, with C by an isometry.) By (11.5), the C*
norm of this composition is uniformly bounded on each D(R) < C. And also the norm of its
derivative at origin is 1. Hence by using elliptic regularity, we may assume that it converges
to a pseudoholomorphic map from C, in C”-topology on any compact subsets. [t can then
be extended to CP! by Gromov’s removable singularity theorem.

Then the diameter of this pseudoholomorphic CP! (which is nontrivial), must be larger
than the injectivity radius of M. We may assume that the injectivity radius of M is larger
than &;. Therefore we can find v, €C independent of n such that

dist (hn epr,.(' th| - 1vO)’hn(pn)) = 81/2

We put p;, = exp,, (| Vh,| ™ 'vo). We take p, and p, for the new marked points. We then
consider a new sequence (Z,, z, ) and consider its limit in Deligne-Mumford compactifica-
tion. Since | Vi, | assumes its maximum at p,, we find that a sequence of pseudoholomorphic
maps on some new component (i.e. CP!) is nontrivial and uniformly bounded there. (If p,, is
away from marked points then there is only one new component. If p, goes to a marked
point, then the number of new components is one or two. In each case | Vh,| is bounded on
these new components.) It follows that we have #¥1((Z,. 20 ), ) < #YV1((Z0s 20 ), )
#3210 < # V5 7 ) By #V5(E 50 1) < #Y5(Z0 7 7), ). Thus Lemma
11.4 holds in this case.

We need some more argument to study the case when |Vh,(p,)|dist(p,, (X, , —
va D, (w)) is bounded. Namely the case when there is a bubble near the neck region. In
this case, however, we find pn such that | Vh,|(p,) — o0 and p, is away from marked points.
To go further we show

SuBLEMMA 11.6. Suppose p,e X, — Ux D, (p)such that | Dh,|(p,) goes to infinity. Then,
by taking a subsequence if necessary, there exists a sequence of points p, .+, p, — such that
‘01/10 < diSt(hn(pn, +)a hn(pn, —)) and limnﬁ @ dist(pn, + pn) =0.

Proof. Choose g, such that d(p,, g,) = 6,— 0. Let 4 > 0. We first prove

lim sup Diam(h,(D, (1)) > ‘0—21 : (11.7)
where ¢; is as in Lemma 11.2. We suppose that (11.7) is false. Then, by taking a subsequence,
we may assume that Diam(h,(D,(4)) <& for any n. We consider a map y,:
Annu(5%,1) > M defined by ,(z) = exp, (4z/2). Here we identify T,X,=~C. We put
V.(z,) = p,. Then | z,|/6, is bounded. We find that the image of i, is contained in D, (4). It
follows that Diam(h, ° y,(Annu(52, 1)) < &;. Therefore by Lemma 11.2" | D(h, ° ) |(z,) < C.
Hence | Dh,(p,)| < C. This contradicts our assumption. We have proved (11.7).

The rest of the proofis a standard diagonal procedure. We choose 4,, — 0. By (11.7) we
have a subsequence ny ; such that Diam(h,, (D, (41)) = &;/2 and that lim;_, ,, ny ; = c0. We
then choose inductively subsequences n,, ; of n,_; ; such that Diam(h, (D, (4n)) = &1/2
and that lim;., n,;=c. We take the subsequence n, ,. So we find that
Diam(h,, (D, (i) > €1/2. We have two points p, ,p, - on D, (i,) such that
dist(h,,  +), by, (pn,, -) > &1/4 Sublemma 11.6 follows. O
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We use Sublemma 11.6 to find p, +, p, -, which we add as marked points. We get
(T, 20 ). Let (£.,,z57) be its limit in Deligne-Mumford compactification.

Since we choose p,. +, p,, - so that they are uniformly away from marked points (this
was possible because they are in the neighborhood of the neck region), ., is obtained
by attaching one CP! to X,,. We write it £, = CPL

We remark that nothing will change for components X, ,, of £, other than v and ...
Namely

we Vj((zns z:)a hn)
wFY
we V(20 ") hy)

w # v’ vnew

} = weVi(Zn 2 7))

} = we Vi(Zn, 27 ), ).

We remark that, since &;/100 < dist(h,(p,, +),h.(p, -)) it follows that wv,€
Y3((Z . 27 ), hy). There are three cases

Case 1: v¢/1(Z,, 27 ), hy). SINCE Voew € ¥1((Zns 7 7). hy), we have #77((Zn, 20 ). ) <
# V(0 20 ), ha).

Case 2: ve 15(((Zn, 27 ), M), vEV5(Znn 27 ), hy) implies that ve ¥5((Z,, zo 7). h,). Hence
#V1(Z0 20 ) ha) < #71((Z0 227, b)) follows from vie, € #1((Z0, 22 7). ha)-

Case 3: veV1((Zu, 20) ha) — V5((Za, 27), hy). Since Viewe ¥5((2,, 20 ), hy), we have
VU S 20 ) 1) < #V1(Ems 2 ) )y # V5 (20 ) ) < # V(B 20 7, ).

The proof of Proposition 11.3 is now complete. |

By Proposition 11.3 and diagonal procedure, we have a sequence u, converging to
0 such that

sup |Dh,| < C (11.8)
%, -UD, )
for some number C independent of n. By (11.8) and elliptic regularity, we conclude that for
each compact subset of X, — {singular points}, h, converges in C” topology. (We remark
that any compact subset of X, — {singular points} can be regarded as a subset of Z, for
large n.)
We next consider the neck region. We fix 4, — 0 and a small number 4, > 0 and put

Wx = Dy, (Ao U Dy (o)
W=D, (i) Dy (24,).

N

W, W, are biholomorphic to Ammu,=[—L{,, L, ]1xS, Annu,,=
[— Ly, Ly.n] x SY, respectively. Here Ly ,, L, — oo and x is a singular point of T,.

We remark that the restriction of h, to the boundary of W, converges for each x. We
restrict h, to W, , and regard it as a map from Annuy,=[—L;,, L{,] xS If the
differential of | 0h, /0t | + | 0h,/0t| on Annuy, is not bounded, we discuss in a similar way to
the proof of Proposition 11.3 to find 2 more marked points such that # ¥7((Z,. z, ), h,) will
increase for this new sequence. Therefore after finitely many steps, we may assume that

|Oh,/0t| + | Oh,/0t| is bounded on each Annug .

that for each &> 0 there exists L(c) and n(e) with lim,oL(s) =00 ‘such that if
te[—L,,+ L{g), L, , — L{¢)] and n > n(e) then | Dh,|(t, 1) < e&.
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Proof. Suppose that there is a sequence T, such that |dh,/0t (T, t,) + | 0h,/0t (T, t,)
is bounded uniformly away from 0 and dist(T, + L, ,) - co. Since the restriction of A,
in a neighborhood of (T, t,,) converges to a pseudoholmorphic map R x S — M, which is
nontrivial, we find (S,, s,) such that

dist(hy(To, £.), hal(Sns 5,) = 121

We add (T, t,) and (S,,, s,) as marked points. We then find that # ¥1((Z,, z, ). h,) increases
again. Therefore repeating this finitely many times, we may assume that there is no such 7',.
The lemma follows. O

We use Lemma 11.9 to show the following

Lemma 11.10. Diam(h,([—Ly., + B, Ly, — B]x SY) < C'e™® for sufficiently large n.
Here C' is independent of n and B.

Proof. We take B, such that

2d
100 f Ceminltdi gy L gy (11.11)
B,

holds for each d = B,. Here C is as in Lemma 11.2. We next choose &, such that
¢1/10e, = By + 10. We put B; = L(g,). Here L(e,) is as in Lemma 11.9.

Now let 1ge[Bo + By — L, ,, L., — By — B{]. We put d; = B,. By Lemma 11.9, we
have
oh

+ ‘ E (Ta xn)

oh,

‘ E (Ts xn)

<&y

for te[ty —dy, 79 + d;]. Hence

Dia’n(hn(sl X [TO - dls To + d1])) < 282(d1 + 10) < ‘0_51

It follows from Lemma 11.2 that if te[tq — dy+1, To + dy — 1] then

‘ %h" (T, t) 4 ‘ aa]/;" (T, [) < Ce—dist(r,r’[ro—d‘,'co +d11).
T o
Since this holds for any 7y with [tg — dy, 79 + d1] < [B; — L., L., — B1], we have
‘ Toe.n)| + ‘ o (1,1)| < Cointortor=doss i  Commint 1A~ Lo =D
T

(11.12)
for any t€[By — L, ,, Ly, — B;]. We put d;, = 2*d,. (11.12) and (11.11) imply that
Diam(h,([to — dz, To + d;]x S1)

< Diam(hy([— Ly + By, — Lo + Bo + By x S%)
+ Diam(h,([L,, — Bo — By, Ly,, — By]1 x §%))

+ Diam(h,([max(tq — d,, — Ly, + Bo + By), min(tq + d5, Ly, — By — B{)] x S1))

—& &1 &
S—+—-+—-<4g

55 10
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if [tg —dy, 10 +da] < [By — Ly, Ly, — By]. Therefore if e[ty —dy + 1,70 +dy — 1]
then

Ce —dist{t, [t —dz, 7ot ds1}

oh,
‘ E (Ta t)

oh,
R <
+‘ 5 (T,n)| <

Since this holds for any 7y with [ty — d3, 79 + d2] < [By — L., L., — B1], we have

oh, o
(T, t) a_t" (‘E, t) < Ce—mm{dlst(r,r’[Bl—LX_,,, Lx_,,—BlD,dz}.

oh,
0t

+ ‘

for any te[B; — L, ,, L., — B;]. Thus we have

(T [) ( [) < < Ce —min{dist(t,[By — Ly, L, ,— B, d;.}

ah
ot

‘ah

by induction on k. We then conclude

—dist(t,d[By— Ly . Ly, — B1])

Lemma 11.10 follows immediately. O

By using Lemma 11.10, we can extent /4, to a pseudoholomophic map /., from X to X.
By definition we have

im (T, 27 ), ha) =((Z 00, 20), 1)

n— 0

Let us next study whether forget, (2., z3), h.,) is well defined or not. (It might be
possible to show that it is well defined in the situation of the proof of Theorem 11.1 by
carefully taking the way to add marked points. However, in the situation to prove Lemma
10.4, we certainly need to consider the case when forget, (X, z5), h..) is not well defined,
and we need to remove some marked points we added.) Let X, , be a component of 2. We
say that it is a dead component if &, is constant there and if it will be unstable after
removing the marked points we added. We may assume f # 0 then the dead component
must be CP! and has at most two singular points. We consider the union of all dead
components and take its connected component say Y = | J,,,Z,. They are mapped to

iel
a point. We consider the union of U DI U D, ..(4,) and add the necks corresponding

iel
to the singular points disjoint from X, — Y. We denote it by Y,,. It is easy to see that Y, is
conformal to annuli or disk. We have Diam(h,(Y,)) — 0.

We then remove all marked points we add which lie on the union of Y,. We denote it
by (Zns 20 ), o).

On the other hand, we remove also all the added marked points on (Z.,, z5) in the dead
component and shrink each of Y to a point. We then obtain (X, z).

It follows from Diam(h,(Y,)) — 0 that

lims ((Zna ) h ) - (( o0 zw )7 hw)

— o0
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CHAPTER 3. CONSTRUCTION OF KURANISHI STRUCTURE
12. CONSTRUCTION OF LOCAL CHART I — APPROXIMATE SOLUTION

This chapter is devoted to the proof of Theorems 7.10 and 7.11. In Sections 12-14, we

are concerned with a local construction. Namely we construct a chart around each element

o =(Z,2),h) of C.ty, ,(M,J,p). The construction is a combination of various ideas ap-

peared in various other places. First it is a variant of Kuranishi’s construction of local versal

family of complex structures. However, we are studying a similar problem at “infinity”. Also

in the similar situation in Gauge theory, there are works by Taubes [67, 68 and Donaldson

[12, 13] performing the gluing construction at infinity in the situation where there is an

obstruction. Also for pseudoholomorphic curve, Floer [16, 19] used Taubes’

type gluing argument. For the study of Gromov-Witten invariant, Ruan-Tian [60]

used a gluing. Also much of the analytic part of our argument in this chapter is a copy of '#":( sazms to

Appendix A of McDuff-Salamon’s book [47] with some modifications. A/‘ mk Ye
Now we start the construction. Let o ={(\‘(Zg,za), haje,//g,m(M, J, (T, g,, B,,0). We mo/“&s. ‘e

first consider the deformation complex of map h as follows. Let £ = { ]| Z, be the decompo- ( m/:o L) )

sition of X into its components. We fix a Kédhler metric on each component. We put
P p P SO always

. missing Ehe

u,(p) =u,(q) if ny_(p)= ﬂzm(Q)} olmblgmé)/ th
chole of

C™(Z hETM ® A (Z,) = D C* (Zot BETM @ A*H(E,) repre som tatin

C*(Zps hiTM) = {(MV)E@ C*(Z,,.s g TM)

We define Sobolev spaces LE(Z,; hi TM), L*(Z,; h¥TM ® A% 1(Z,)) in a similar way.
{Here LY Sobolev space consists of elements whose first derivative is of L class.) We remark
that the definition of LY(X,; h*TM) makes sense only for p > 2 since only in that case
LY section is continuous.

We consider the linearization of the pseudoholomorphic curve equation. It induces an

operator | m reloyant O/Uraéa’.s
(Da8e): C7(E0: BETM) > Co (S, ETM @ A% () | Wil be Thoe on Z"“‘Z‘f"”
tn(Ze,-) to Ye Antld)
action

(D 32.): LA(S,; hETM) — LV, i TM ® A% (5,) (121) ol be PiLle, €)
or olfer Lu;,,.,/,

Here we write (D, dx,) in order to distinguish it from the nonlinear equation d; h = 0. ohﬁy 4 i (5) .
(12.1) is a bounded operator. t
'Fim'ie

and

S

Lemma 12.2. (12.1) is a Fredholm operator of index 2¢1(M) + 2n(1 — g).

Proof. We first consider each component separately. Namely we consider the following
operator:

D3:LE(E, \; KETM) = LV(E, ;s hETM @ A%1(, ) (123)

By Riemann-Roch and Atiyah-Singer index theorem, (12.3) is a Fredholm operator of
index 2¢* (M) B, + 2n(1 — g,). Here g, is the genus of X, , and B, = h,_.[Z,.,]. By definition

L, ETM) < OO LA (Z,.,; hE TM). (12.4)
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The codimension of the inclusion (12.4) is equal to 2n times the number of singular points.
Using the graph Ty we introduced in Section 8, we find that the number of singular points
is equal to the number of the edges of T .

By Euler’s formula we have

#edges of Ty, — # vertices of Ty, =rank H,(Tx; Q) — 1
Therefore

LY, s hTM
dim @;f’(li() ahv”"T(}\/I) ) = 2n(rank H{(Tx; Q) — 1 + # vertices of Ty ).  (12.5)
1\&g> g

On the other hand, summing up the indices of (12.3), we find that the index of
DO: @ LY(Z, s h¥TM) » © L' (X, i TM @ A% (X, ).
is equal to

Y 2 (M)B, + 2n(l — g,) =21 (M)B —2n ). g, + 2n# vertices of Ty,.  (12.6)

We remark that )" g, + rank H, (T ; Q) = g (Definition 7.2). The lemma then follows from

(12.5) and (12.6). . - £ 5 d d o

Choice of obstruction spaes — for full ©,no /!ocals&‘a& wn

We next|choose a subspace E, of LP(Z,;hiTM ® A% 1(Z,)|with the following A'ut( 6)
net

properties.

(12.7.1) The sum of the image of (12.1) and E, is L*(Z,; h*TM ® A*1(Z,)). M [Es)
(12.7.2) E, is complex linear and Aut(o)-invarignt. Ch chlanf —
(12.7.3) There exists a compact set Kobs”u(a)‘.ﬁwag from the singular point such that the le
support of each element of E, is in K pqr{0). We assume also that K pg.,(0) is w
Aut{o)-invariant. dé{ f;""é

(12.7.4) E, is finite dimensional and consists of smooth sections. (-Porﬁ)td h({) "FOI"

To find such E,, we first use the unique continuation theorem ([3] see also [22]) to find [ BJ W =0
E, satisfying (12.7.1), (12.7.3) and (12.7.4) and that E is isomorphic to the cokernel of (12.1). %HZ)
Using the fact that the action of Aut{s) is complex linear, we find a finite dimensional
subspace E, containing E; and satisfying (12.7.1)-(12.7.4). Hence E, is equal to or larger
than the cokernel of (12.1).
We remark that the main point of negative multiple cover problem is that we cannot
assume in general that the cokernel of (12.1) is 0 for generic almost complex structure. Hence
we need to work in the situation when the bundle E, is nontrivial. This is the reason we
introduced the notion of Kuranishi structure.
We now consider the operator

LP(Z,; h¥TM ® A%1(Z,))

Mg, - (Dh,g) (LA (Zg hETM) — E

(12.8)

L', FTM ® AT (3)
E,
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is well defined as a Banach space because of (12.7.4). It is a complex vector space and Aut(o)
acts on it because of (12.7.2).

Let ... be the kernel of the operator (12.8). We next take a family of semistable
curves in a neighborhood of our semistable curve (X, z,) together with a family of Riemann
metrics on it. The construction is similar to one in Section 9, but there is a small difference
related to the fact that (X,, z,) may not be stable.

We first consider a deformation in the same stratum (combinatorial type). We consider
a stable component X, ,. We regard it as an element of .#, , . Here g, is the genus of
%,.v and m, is the number of points on X, , which are marked or singular. (Let z, be the
collection of those points together with its order.) The assumption that X, , is stable means
that 2g, + m, > 3.

There is a family of elements of a neighborhood of %, , in .#,_,, parameterized by the
neighborhood of 0 in C3%~3*™/4ut(Z,, z,).

We consider the product

C3y‘.— 3+m,

2\,’ is stable

Let geform.o D€ @ neighborhood of O of this space. We have a fiberwise complex structure on

deform, ¢ X = which was induced by the universal family. We take the representative as
follows. We consider the direct product gerorm.s X 2, and change the complex structure in
a compact set Kyerorm(0) S Z, away from the singular or marked points so that it gives
a universal family. Again by unique continuation, we may assume that Ky.o.m(0) is away
from singular or marked points. We also take a family of Kdhler metrics which is constant
outside a compact set Kyerorm(0). We may also assume that .o, o X 2 together with
fiberwise complex structure and Kéahler metric is equivariant by the diagonal action of
Aut(o). (We remark that the group Aut{s) is contained in the group Aut(X,). Aut(Z,)
contains the direct product of Aut(Z, ,, z,,,) but may be strictly larger than that, since there
may be an automorphism interchanging the components.)

We next consider the family of vector spaces

@ Tx‘,za,v ® TXWZG',W'

x:singular

By exactly the same way as Section 9, we construct a family of semistable curves paramet-

rized by a neighborhood of 0 in @ T 260 @ T 26 -

Let  iecotve.o D€ this neighborhood. Now we have a family of semistable curves together
with fiberwise Kéhler metric parametrized by  gerorm.o X resolve.o-

We remark that the metric constructed here is a direct generalization of the one in [47,

Appendix A]. There is one change, which is not essential. That 1s we perturb the metric so
that it is smooth while the metric McDuff-Salamon used to define the weighted Sobolev
norm in [47, Section A.4], is singular on one circle. However this difference is not essential
at all since the derivative of the metric is never used in [47].

Let K, .. (o) be the small compact neighborhood of the neck (the part we glued the
spaces.) More explicitly we put

Koeer(0) = [ Do (RS V)UD, (RL).

X

Here x runs over the set of all singular points and R, = |a,| 172

will Le
dw&‘r? with
nonolescrele
At (Z6)
hore
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By construction, our semistable curve is independent of the parameter in  geform, o ¥

resolve, o OULS1Ae Kyeorm (0)U Kpeck(0).

We next consider the action of automorphisms. The group Aut(X,,z,) may be of
positive dimension because of the presence of unstable components. However we need to
require the construction equivariant only by Aut(o) (the set of elements y € Aut(Z,, z,) such
that h,°y = hg), which is a finite group.

We next deal with the connected component Aut(X,,z,), that is

veunstable AUH(Z6 v, Z5,). The Lie algebra of Aut(Z, ,,z, ) is identified to the set of all
holomorphic vector fields on X, , which are zero at z, , and at singular points. Any such
vector field induces an element of the kernel of D, 0s :L{(Z,;h¥TM)—
LP(Z,; h¥TM ® A>1(Z,)). Hence we embed Lie(Aut(Z,,2,)) S  map, - We use our metric to
take its L? orthogonal component. Let| 1., o/be a small neighborhood of zero of it. Now let

2
us put MU%[OC@Z;&'C&I. Ve’[[ 't'é
s = deform, o X resolve,o X map, @ G) -‘hva”'%f
¢ = deform,c X resolve,g X

We remark that there is an action of Aut{s) on and E,. s&,mg
“d
THEOREM 12.9. There is an quivariant map s,: o — E, which is 0 at origin and
a continuous map Y. 2 sy (0) > C.#l, (M, J, B). The restriction of Y to .~ sy *(0)/Aut(o)
gives a homeomorphism onto a neighborhood of o.

Let , denote the restriction of /7 to . ns; 1(0)/Aut(c). /e See pI‘DP [2.23

The proof of Theorem 12.9 (which occupies Sections 13 and 14) goes in a similar line as
other gluing procedures. First we construct an approximate solution and deform it to an
actual solution.

The construction of the approximate solution is the same as the one by
McDuff-Salamon in [47]. We take { =((Z,), (2)) €  deform.o X resolve,o- HETE (£,) 18 the
parameter to deform the complex structure of £, in Kyrorm{o). We glue the component
around each of the singular points and the way to glue the components is parametrized by
(o). (We leave the singular point to be singular if o, = 0.) Let X, be the semistable curve
obtained in this way.

Letue ... We define maps hy X, , = M by

hy y.u(P) = eXPugp (U(p)). (12.10)

Since we assumed that u,(x,) = u,(x,) it follows that we can glue to obtain a map h; , from
Z,. We modify it and construct a map hypprox.cu: 2 = M. Let R, = |a,|”V2 By the
description in Section 9, the semistable curve X, is obtained from the disjoint union

U <2 —  D.(Ry 1))

v

/map-a' WLW C;\ P%‘y"@p

by identifying a circle 0D, (R; ') with another one (and deforming the complex structure
ON  geform,o)- We choose a sufficiently small 6 and fix it throughout. We assume
1/6R, < 1/RY*. We do not modify the map hy ,, outside the union of the balls
D, (2R;'67"). Namely we put

happrox,l,u(p) = hl,v,u(p) (1211)
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if peX,, — ) D.(2R; 6™ 1). Here D, (2R; 6™ %) is the metric ball in %, , centered at
x, and of radius 2R; 16~ 1. To glue them we use a partition of unity on the domain

D(R,, x,v) = |J D, (2R; '6™1) — D, (2R; ). (12.12)

as follows. We put e, = expy) t(X,) = eXPp(y U{X,,). Then the image of the set (12.10) by
hy . 1s contained in a small neighborhood of e,.
Let x:[0, c0)— [0, 1] be a cut off function such that

") 1 ifr>=2
) —
X 0 if r<l.

We now put

expe, (1 (R.|V])exp, ' (hy u(exp, V) veD(QR: ™) — D(RS 6™

ey veD(R;'6™ 1Y — Int D(RJY).
(12.13)

haPPrOX-C-u(eprV) = {

Clearly they are glued to define a map hyypeoxcu:2c— M. We next estimate

I 5zghappmx,g, ull Lz, (Here we write 8;, to make clear that we are using the complex structure
perturbed by (£,) and (x,).)
We remark that we have

| a_Z;happrox,C,u(p)' < C| Ll(p) | | Vu(p) |

for p¢ ), (D, 2R;'67") — D, (R7 167 1) U Kyetorm(0). (We recall that Kerom(0) is the
domain where we perturb the complex structure.) We have also

LEMMA 1214 ” §Z;happrox,g,u ” LK getorm(0)) < C( ” (év) || + ” u ”L*) ” u ”L"'
This lemma is obvious from definition. On the other hand, we have
LemMA 1215, [|0x Happrox, c.u | LD, (2R7'67) =D, (R716°1) S C(R0)™?".

Proof. The proof is the same as the proof of Lemma A4.3 of [47].

Namely the restriction of s Rupprox.c.u t0 DQR;'671) — D(RZ1671) is a sum of two
terms. One involves the differential of the cut off function, the other involves the differential
of hy ¢ 4

The first term is estimated by R,6 times ||v|| which is bounded pointwise.

The second term is estimated by the first derivative of h,,p.0x. ¢, times some constant,
and hence is bounded. (We remark that || 5happmx,gu | L« s, 1s bounded.)

Since the volume of the domain D(2R; 6~ 1) — D(R;*57 1) is constant times (R,5) 2,
the L? norm is estimated as asserted. O

Thus we have constructed a family of approximate solutions. To go further we need to
use a right inverse to (12.1). However (12.1) has a cokernel. This is the point we need to
introduce the obstruction bundle. We recall that

LP(Z,; h¥ TM®AY1(Z,))

g, - (Dhquo) LA hETM) — E
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In place of studying the iuatlon 0s.h = 0, we study the following equation: a
) o /;&&Lfo o S WL e
Osh=0 modE,. ap g

bo be. Autls)- LA—

Let us make eq.(12.17) more precise. (12.17) is an equation for a pair ({, &) such that
C = ((év))a (ax)) €  deform,c X resolve,o and h: ZC - M. We remark that Kobstru(a) is away from
Kccx(0), hence we may regard Kpg,u(0) = ;. We consider only h:X; — M such that

M d} (12.18)

dist(h(p), h,(p)) < min{ 100

for each p e K. (0). Here injrad(M) is the injectivity radius of M and d is a small number
depending only on M and will be specified below.

Let x,yeM with dist(x,y)<d. We consider the parallel transform
Par, ,: T.(M) - T,(M) along the minimal geodesic joining x and y.

We put

Par., =P, ,+ Py, 12.19
sy s Y s Y

where P, is complex linear and Py , is anti linear. Taking d enough small we may assume
that P’ , induces an isomorphism of the bundles if dist(x, y) < d. Hence by (12.18), we have
an isomorphism

%'rh: Cw(Kohstr(J); h:rk ™ ® AO’ 1(25)) - COO(Kubstr(O-); h*TM ® AO’ 1(2C)) (1220)
Here we use also the projection

A 1(ZJ)IK0M,(J) = A1(26)|Kubw(a) = AI(Z§)|K01,,."(0) - A% 1(2§)|K0m(a)

which can be assumed to be arbitrary close to identity by taking erorm,, Small.

We use isomorphism (12.20) together with the fact that the support of each element of
E, is in Kb (0), to regard E, also as a subspace of C*(Z;; hM) ® A% *(Z;)). Hence (12.17)
makes sense. (w326

Now we consider the approximate solution /,,p.0x, ¢, and find that

||az dpproxt'u”L”(Z Kopr UK etom UK peer)) < Cllu||g- ||“||L" (12.21)
10s approx.cw — O, | poiany < CULEN + Nuallpe) el s (12.22)

Here we identify 05 u€ E, to an element of C*(K,; h*(M)® A% (Z,)) by (12.20).
We prove the following proposition in the next section.

, ﬂlormu'h of kurhm'f‘l' char ¢

PROPOSITION 12.23. Replaci b Il j , th i st ti :
ep acmg v smaller one if necessary, there exist a continuous VOL@% /
map s,: § — E,, and a continuous family of smooth maps h;,:X; — M such that

[ocJS&C& Pl Z.me 60
(12231) 0. [’i’:ﬁ So(C, u) holds for every (. Pmo{l 5/1&1&( & th SF/3

(12.23.2) s,: E, is Aut(o) equivariant. =~

(12.23.3)  The map({, u) — hg,, is Aut(c) equivariant in the following sense. We remark that
we have constructed already a biholomorphic map ¢, : X, —» X for each y € Aut(o).
Then we have h., . ° @, = hg ,.

(12.23.4) s,(0) =
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We remark that the space s, '(0)/Aut(c) is mapped to C.#,,(M,J,B), since if

s,((, u) = 0 then h,,, is pseudoholomorphic by (12.23.1). We denote that map by ;" . Using

implicit function theorem we can prove the following lemma. (The proof is in Section 13.)
M M'“

WWWMU f&mw—

Lemma 12.24, M
s len .bw From [ghlet?

W—» C My (M, J, B) is injective. gt Ls rﬁ‘[f I’IM/W/HCA 0\0

Shoull also prove  Hfo edgesin © go
In Section 14, we prove the following: Con-l:mmﬁy Hmlk feen #mi’ 0/” C” /Aﬁ

of fepiS! on Yo dileeotie (liotys

ProposITION 12.25. W 7 (s, *(0)/Aut(a)) contains a neighborhood of o in C,.%,M(M, J, B). focused

plniy o )

2%

We remark that

-&,\L oK b‘ﬁ'{'— m“ﬂ(o) 10)
VAY J:WJCG‘EUIC %o% "0< Aut(o) > 2 <Au[(a)> tq%&t -6 2 ThlS s Ak
by the definition of . ( ) b"’* ‘J‘V pbc-‘ 9&5‘"5 he fbg)lme have om

Theorem 12.7 follows from Propositions 12.23 and 12.25 and Lemma 12.24. Aut .-myarlanf
We thus obtain a chart of Kuranishi structure around each point of C.Z, (M, J, p).

(Namely , E, and s,). In section 15, we glue them to obtain a Kuramshl structure S/J?e -

globally. fu[ousE;.
We close this section remarking that the virtual dimension of our chart is constant and is But t}mg- woly
equal to 2m + 2fcy + 2(3 —n){g — 1). This is necessary to verify Condition (5.3.4) of W’M& Audls) -

Kuranishi struture. This fact tollows from Lemma 12.2 as tollows: . vawiomt £

We remark that by adding a marked point the virtual dimension increase by 2. In fact if Eion ’
we add a marked point on stable component then dim  geform,, 1nCrease by 2 and if add 7 a mere
red poi . , . ' htinttesimad

a marked point to unstable component then dim ,,,, , increase by 2. It follows that we are .y ‘{
only to consider the case when X, is stable. Let us calculate the virtual dimension in that
case. ’eq wire. olihor-

To calculate the virtual dimension of the Kuranishi structure we need to add the index ULDZEIIMV M

2fcy + 2n(1 — g) and the dimension of the deformation of complex structure and the OFHQ M[z)_
parameter to resolve the singularity. The latter is twice of the complex dimension of aaé-[w,
the space C.#, , which is m 4 3g — 3. Hence we have the dimension 2m + 2fc; + H}S e at‘él'dn oh
2(3 — n){g — 1). If one wants to do it more directly, the calculation of the dimension around Fni le dirmonspnel
each point can be done by counting the dimension of the deformation of each component . )

. L ) o : s lornani fo s lh
(i.e. the dimension of eform.s) and adding the dimension of the parameter resolving the #e sm 80#7
singularity (i.e. the dimension of e o). We leave the reader to work out this elementary
and standard calculation. (We are going to do a similar calculatlon at the end of Section 19.) mc h'l’ W

Pu His would now have 4o ke com bmeal with #e st.s . S50 massive chq/bngcs
wihen o nedal cunc consists of several AQcampofhz

13. CONSTRUCTION OF LOCAL CHART II—RIGHT INVERSE TO LINEARIZED EQUATION AND

CONSTRUCTION OF EXACT SOLUTION

We use the same notation as in Section 12 and are going to[grove Proposition 12.23.[
The proof is again a copy of McDuff-Salamon’s in [47] with some minor modifications to
handle the existence of the obstruction and moduli parameter. We will omit some of the
details of the part where we can prove in exactly the same way as in [47].
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First we recall that an element ue ,,,, , satisfies (Dhﬁzo)u = v for some ve E,. Therefore
map.o CONSists of smooth sections and is of finite dimension. Hence the L? orthogonal
projection

My, is s — Y G, edpse;
13

is well defined on LY(Z,; h¥ TM). Here ¢; is an (L?)-orthonormal basis of .,.,. We let
map,o D€ its image. We have

LI{(Z’ h:lx'( TM) = map,o (‘B .

map,o*
It is also easy to see that
5 LAZ,; hiTM @ A 1(Z,))
1_[E(7 ° (Dhoaz,) : rJr_mp,a' - ( E (

is an isomorphism. (We recall that E, is of finite dimension. Hence the quotient space,

LP(Z,; hETM ® A*1(Z,))
E,

is well defined as a Banach space.) Therefore its inverse

L'Es i TM®ATY(E,) )

G- map, ¢
Ec P

is bounded by open mapping theorem.
We next recall that we have a map

U U G = Dx(Re0)) X (13.1)

v xesing(X,,)

which is a diffeomorphism outside the boundary (union of circles). On the boundary the
map is 2:1.
We recall that by our choice of h,,pe0x, ¢, WE have, for each

PE U U (Za,v - va(R;ix ))a

v xesing(Z,,)

the inequality

. Vinjrad(M
Sup dist (), hyppron . oIp)) < min {%é) d}. (132)
We use (13.2) and obtain
Pary (s tp)* IryyM = T am M- (13.3)

Namely Pary, ... .ap 18 the parallel transport along the unique geodesic in M joining
he(p) and h,ppeox. ¢, o(Ip). We write it as the sum of complex linear and antilinear parts as in
(12.19) and let Pj, (,)p,,......ap bE the complex linear part. By taking d small we may assume
that Py s, up) 18 anisomorphism.

Also we have a bundle isomorphism

Iso;:A%? < U U E.v— DR, ))> - A" X)), (13.4)

v xesing(X,,,)
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which cover (13.1), which is identity outside Kyesorm(0)U K, ecr (o) and which satisfies
[Iso; — id]ex < Cll(E) |- (13.5)

on Kyerorm(0). (We recall (£,) is the parameter to deform the complex structure of our
semistable curve and the deformation is supported on K,..(c).) Here D, (R, } ) is a metric
ball centered at x, and of radius R, j

Using (13.3) and (13.4), we obtain a map

IC,u :LP(ZC; h:fpprox,t_',uTM ® AO! 1(ZC)) - @ Lp(za,v - va(Ra_,;,‘); h;’ ™ ® Ao‘l(za,v))'

We next use a map
@ LA, — Dy (R;.2)); hETM @ A*1(Z)) = L¥(Z; hi TM ® A% 1(Z))
by extending sections as 0. {An element of the image of this map is discontinuous. But we do
not have to worry about it since we are working with L? spaces.) Let
I LP(Z; b prox.c TM @ A% Y(Z)) > LP(E; X TM @ A 1(X))

be the composition.
We next use McDuff-Salamon’s, Lemma A.1.11in [47]. We put § = ¢~ 2™, It implies the
existence of a function f:[0, c0) — [0, 1] such that

pr) = {1 r=o (13.6)

0 fr>1-—o0

for some o and

ﬁ - IVB(z])I* < 2e. (13.7)

We use it to define
Gluey i LI(Z,; hETM) — LY (Z¢; hifprox,c.u TM) (13.8)
as follows. We first put
Glue, u()(P) = Ph(p)hpencim(5(p))  1F

pE U U (Za,v - Dx,(Ra'_.;Jz)))

v xesing(X,,)

or
13.9
p = oxpa () RELO™T < V] < RIL2. (139)

For p = exp, (v) with R;} < |v[| < R;1671, we proceed as follows. Let x = x, = x,,,

namelyletZ, ,, X, , be the two components of ¥, containing the singular point x. We recall

that, to construt X, we identified v and w = o, /v. Let p, = exp, (v) and p,, = exp,_(W).
We then put

Glueg (s)(p,) = P;:(,(p‘,)happm,; (o0S(Py)

+ (T = BO/R o [V P o sm0SPw) = Ph(pyhgpne im0 5x)) (13.10)
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if p, =exp,(v) with R; < |v[| < R;.67 % In a neighborhooid of 6 'R} = |v|, the
right-hand side of (13.10) is P}, (. )n, . .(p,S(Py). Hence it coincides with (13.9). In a neighbor-
hood of R;} = |v|, the right-hand side of (13.10) is

P e i22S(PY) + Phpyionc0d8(Pw) = Phohp e (08 (X)

and is invariant by Ve w, since happrox,l,u(pv) = happrox,[,u(pw) if Rx_, ;x = ”V” Hence
Glueg ,(s) is continuous there.
Now we define
. Lp(zfa :‘pprox,l,uTM ® AO! I(EZ))

Q,C,u- E _’LIIJ(EU h:lkpprox,C,uTM)

by
Qé,u = Glue,;,uo Qa OIC,u-
Here we regard Q, as a map
Qo LP(Z5 hiTM ® A% Y(Z,)) — LE(Z,; hi TM)

which is 0 on ,. By the choice of the way we embed E, in LP(Z¢; h¥,prox. .t TM @ A% 1)),
we find that I, (E,) = E,. It follows that Glue, , > Q, <1, ,is 0 on E, and defines a map from
the quotient space.

Lena 1301 [ TTs, > (Dy....3x) > Qppronc.ul8) — sluse, <3l if 8 and || are suff-
ciently small.

Proof. The argument we need to control the error term coming from gluing is exactly
the same as the proof of Lemma A.4.2 of [47]. We can control the term coming from
deformation of complex structure since it is parameterized by {. O

Using Lemma 13.11, it is an exercise of functional analysis to find

. Lp(zfa h:{pprox,é,uTM ® AO’ I(EZ))
: Ea

Lou _)Lllj(zﬁs h:fpprox,é,uTM)

such that
(T, ° Dy, 0s)° Qr.us) = 5. (13.12)
Lemma 13.13.

. Lp(zfa h:‘pprox,c,u ™ ® AO! ! (Ef))
Lus
] EJ

- LIIJ (Eis h:lkpprox,t_',u TM)

is bounded uniformly of {, u.

The proot 1s the same as Lemma A.4.2 of [47].

Now we can use Newton’s method to construct exact solutions of eq. (12.17) paramet-
rized by o as follows.

We first put

hgpprox,é, u(p) = exphappm,; u(p)( - (QC, u(r[E‘7 ghapprox, ¢, u))(p))
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By Lemmata 12.14 and 12.15, Formulae (12.21), (12.22), (13.12) and Lemma 13.13, we
find

dLT(hgpprox,C,ua happrox,lsu) < C(5—2/p|a|4/p + (”é” + ”u”L*) ”u”LT)s (1314)

and

” HE,ghgpprox,C,u ”L"/Ea < C ”QC,U(l—[E7 5happrox,l‘u) ”L“ || 1_[EL7 5happrox,[,u ”L'"/E(7
< CE2P1d* + (IE1 + Null) lul ) T, Ohappeox £ ull e, (13.15)

Here Iy is a projection to the quotient space by E,. Using (13.14) and (13.15), we can
repeat the same procedure if u, J, («,) and ¢ are sufficiently small and obtain h,fppmx‘ ¢u @S
follows:

h:pprox, ¢, u(p) = eXph:ppm: u(P) ( - (Qt_', u(l_IE(7 gh‘fpprox, ¢, u))(p))

We have
”HEaaha?pprox,C,u ”L”/E, < C” QC,u(HEaah'zpprox,C,u) ”L*‘ ” l_IE‘7 ahgpprox,g,u ”L"/Ea-
< C ” 1_IE(7 ghfpprox, Lou ”%}’/E,-
We define hipprox,w, i=4,...,1in a similar way. We then have
hexact,l,u = lim h;npprox,l,u
m— o
such that

ahexact,;u =0 mod Ea"

Thus we obtain solutions of (12.17). It is immediate from construction that it satisfies
Conditions (12.22.1)-(12.22.4).

Remark 13.16. It might be possible to show that s, is smooth. However we do not need
it since we can use Lemma 3.12 instead. (Roughly speaking, continuous section is enough
for our purpose since Euler class is an invariant of the C°-structure of the bundle.) It seems
cumbersome to prove smoothness at the point where «, = 0 for some x.

@ next prove Lemma 12.2‘4] First we recall that Aut(Z,, z,) is the group of automor-
phisms of the semistable curve fixing marked points, and Aut(o) is a subgroup of Aut(Z,, z,)
consisting of elements 9 such that h, 3 = h,. Let LieAut(X,, z,)o be the neighborhood of
identity of the Lie algebra of Aut(%,, z,). We will construct an “action” of LieAut(X,, 7)o On

deform.o X resolve,o- (IL 18 mot an action in the usual sense. Namely if we identify
LieAut(X,, z,)o with the neighborhood of the identify in Aut(X,,z,), then
(172 )(x) # 71{y2(x)). This is the reason we write LieAut(Z,, z,)o in place of Aut(Z,, z,)o. We
mention this point again later.) The finite group Aut(o) acts on LieAut(Z,, z,)o-
We next consider universal family 7:Uni > geform.o X resolve.o- Namely for each
(€ deorm.o X resolve,o the fibre 77 1(() is identified with X,. We remark that Aut(o) acts on
Uni and  geform,o X resolve,o and 7 1s Aut(c)-equivariant.
We also remark that Uni is a smooth manifold together with fiberwise complex

I\ Due. 4o tamgont: bumdle copdition

proba
olo heex

Shaoothress

_gin case of non-nodel unstally domain without gonus or

o

structure. In fact, 1t 1s obvious that we have such a smooth structure outside the singular
points of Z,. It is true at singular points also since Uni looks like {(x, y, x)€ C* | xy = o} x C¥
in its neighborhood and =(x, y, a, Z) = (2, Z).
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We then are going to find an open neighborhood  deform.o X resolve,o Of OTigin and maps
T s ! ’
act: LleAut(zas za)O X deform, o X resolve, o - deform, o X resolve, o
alt: LieAut(Z,, 25)o x Uni’ — Uni (where Uni’ = 171 detorm.0 X resolve.o))

such that the diagram

act

LieAut(Z,, z,)o X Uni’ — Uni
! !

act

. 7 7
LIEAMI(ZJ, za)O X deform, ¢ X resolve, ¢ > deform, ¢ X resolve, o
Diagram 13.17.

commutes and the following holds.

S
LemMma 13.18. Let [, '€ Geforms X resolve,s- 1f Z¢ and X together with their marked [ S“y
points are biholomorphic to each other and let ¢:X; — X, be a biholomorphic map. Suppose (/ C)Z
that h, = @ is sufficiently close to h, on X; — Keci. (We remark that Ty — Kook is identified to h" ,,n;}]
Y5 — Kok Hence hy°@ does make sense.) Then there exist yo€ LieAut(Z,, z,)o and
71 € Aut(o) such that {' = y,7,(. Moreover @ = 7y1y,. Here yo: X, — X, . is the map induced by = ? ot to
act and y1: %, = X, , = X is a map induced by the action of y, € Aut(c) on Uni. Here we J ‘ ,""6(6)

write y{ = act(y, {). /
h°/|9'=hl 700}’ 9@2 \.’) LL

Now let us assume that ({, u), ({’, u')e , and that (X, h; ,) is equivalent to (., h ).
Namely we assume that there exists a biholomorphic map $:%, — X, such that /9’5&66
he .8 = hy . 1t suffices to find pe Aut(o) such that u(l, u) = (L', u’). Mff)
We have yq € LieAut(X,, 2 )o, 1 € Aut(o) satisying y1y0{ = {'.
We remark that [ = getorm.0 X resolve.s X map,o A0d  1ap 4 18 perpendicular to the | _ <
_Lie algebra Aut(%,, z,)o, (Which are regarded as holomorphic vector fields.) Therefore the qlg- 6M (F)

’

by construction, we have yo = 1. (We remark that the support of elements of .. ,is away

from singular points. Hence we can apply implicite theorem.) The proof of Lemma 12.24 is ICM sz ‘y’“

complete. O f MZ) acls

€lon maps...

Finally, we construct aét: Aut(Z,, z,)o x Uni’ — Uni and prove Lemma 13.18. ... but ct Mfé /
We put additional marked points z%, ..., z,, to Z, so that each unstable component of it ‘

will become stable. The position of z; is arbitrary but we require that the number of the

additional marked points is as small as possible. Namely we put one more marked point for

each unstable S? with two special points and two additional marked points for each

unstable S$? with one special point. We put z, = (z1, ... , Zjy).
We Cau (20'3 (zw z:r))e C'%g,m%—m' as Za" We remark that deform,c —  deform,g’>
Tesolve.s = resolve.o’ Since the number of additional marked points is as small as possible.

Hence we obtain an open embedding:

X . X < '
Addmark: deform, o resolve, o _ deform, o resolve, o N C% — 1319
A G ty) At ) e (131

We remark that Aut(X,, (z,,2,)) is a finite subgroup of Aut(Z,, z,). We next consider the
product

LiEAMt(EJ, za)O X deform, g X z:o' - LieAut(Zaa za)O X deform, o (1320)
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We construct a family of complex structures on the fibers of this map by deforming X, at
Kaetorm, o-

On each fiber of (13.20), we put m + m’ marked points as follows. For the first m marked
points we take marked points z, and do not move it. For additional m" marked points, we
move them by using LieAut(X,, z,)o components. (Here we identify LieAut(X,, 7)o with
a small neighborhood of identity in Aut(X,, z5)o)-

We next resolve singularities of each fiber of (13.20) in the same way as in Section 9 by
taking additional factor  cepe.s. We get

7T+ : Uni+ - LieAut(Za, za)O X deform, o X resolve,o* (1321)

We remark that Aut(o) and Aut(Z,, (z,, z,)) generate a finite group G. We use a G invari-
ant metric to use the method of Section 6 to construct the map (13.21).

We now construct the maps act, act. Let {€ getorm.0 X resolve.o D€ 1N @ small neighbor-
hood of 0 (which we call  jeform,o X resolve,o) and let ye LieAut(Z,, z,)o.

The fibre (z7)~1(y,{) of the map (13.21) (together with m + m’ marked points) is
regarded as an element of C.#, 4+, Hence we find {'€ 4eform, 6 X resolve,s SUCh that
(m)” Xy, {) is biholomorphic to (z*)~ (0, {') = Z,.. Let

@ (@)1, ) > (1) 710, L)

be the biholomorphic map. The pair (', ¢, () is unique modulo the action of finite group
Aut(X,, (25, 2,)). By requiring dist(x, ¢, .(x)) to be small, we can choose ({, ¢, ;) uniquely.
(Here we use a metric on Uni™ to define dist(x, ¢, (x)).)

By construction, (7)™ 1(y, {) and (=)~ 10, {) together with its first m-marked points are
biholomorphic and there is a canonical biholomorphic map. This is because our construc-
tion is trivial on Aut(Z,, z,), factor except m’ additional marked points.

We put (' = act(y,{) and let ¢, (n7) "1y, ) =X, > ()" 10,{’) = =, be the restric-
tion of aét to n71{ =X,

We need to remark however that this map is not so natural. In fact, we have

act(y'y, {) # act(y’, act(y, {)),
in general. (Here 'y is the multiplication in Aut(X,, z,)o.) However the “orbit” of this

“action” is well defined. Namely we have the following:

Lemma 13.22. There exists Aut(Z,, 7,)o S Aut(Z,, 2,)o such that if 7', ve Aut(Z,, Z,)o
and if (€ Jetorm.oc X resolve,s Lhen there exists y" e Aut(X,, z,)o such that

act(y”, ) = act(y’, act(y, {))
Moreover @ ..o = @y 4 ° @,
Proof. Let us first describe ¢, . ¢ ,. Let us consider z’eX... We pull it back to

oc, },1 ()X — Kieok = L5 — Kieck- We deform the complex structure and resolve the singu-
larity using {. We then get a m + m’ pointed Riemann surface. This Riemann surface is

biholomorphic t0 X, a0y It then is isomorphic to some (z7)~!(y”,() since
Zct(r act(y, 0y 18 1somorphic to X, after forgetting m’ marked points. Therefore we have
act(y”, ) = act(y’, act(y, {)). The equality ¢ ,» = @, , ° @, follows from the above men-
tioned uniqueness of ¢ . 0
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We now prove Lemma 13.18. Let {, {'€  derorm,0 X resolve, o> @ : 2¢ = 2 be as in Lemma
13.18. Since h, ° @ is sufficiently close to h,, there exists 7, € Aut(c) such that y1 *¢(z}) is close
to z; for i=1,...,m. (Since z;€eZ; — Kpeer, We may regard yi'e(z))eZ, — Kneeks
Z1€X, — K, eex.) Therefore Addmark(y; (') is close to Addmark((). (We use here the fact
that the metric we use to construct Addmark is G invariant.)

We furthermore remark that Addmark(yy1{’) = (%)~ (0, y; 1¢’) is biholomorphic to
Addmark(l) = (7))~ 10, {) after removing additional m" marked points. Therefore, there
exists yo € LieAut(Z,, z,)o such that (z7)~ (0, y; *{’) is biholomorphic to (7)™ 1(y, ).
Therefore y; 1’ = vo{. Here ' = 7oL

We now prove that the map y, © ¢, . coincides with ¢:X; — X;.. By construction, we
have

7105,.(2) = @(zi). (13.23)
Here we regards
Z;E(ﬂ+)_1(0, C,) - I<neck = Za - Kneck'

Therefore y,¢,, ; coincides with ¢ on unstable components of Z,. Let G’ be the subgroup of
Aut(Z,) consisting of elements which is identity on unstable components. G’ is a finite
group. We find that ¢~ 'y,¢,; . is in G. We also find that both h,°y;°¢,, and h,° ¢ is
close to h,. Therefore, using the finiteness of G’, we have y,¢,. ¢~ € Aut(o). By changing
71 we may assume that ¢ ~'y;¢,. = 1. The proof of Lemma 13.18 is now complete. []

14. CONSTRUCTION OF LOCAL CHART III—SURJECTIVITY

In this section, we are going to prove Proposition 12.25. We first need to prove an
a priori estimate for pseudoholomorphic curve. That is we need to prove Lemma 11.2.

Proof of Lemma 11.2. Choose p, such that h(t, t)e D,, (po). Let Z.(t) = h(t, ). We may
assume that ¢; is smaller than the injectivity radius. Hence we write

£ (t) = expp(r)< > ak(r)e’“">. (14.1)
*

SuBLEMMA 14.2. There is a unique p(t) such that aq(z) = 0.

2n
X — j expy L(Z.(t))dt.
0

a function U —» C". Here U is a small neighborhood of Im /.. It is easy to see that the
differential of it is invertible. Hence it hits zero at unique point p(z), as required. O

Now we rewrite the equation oh = 0 using a,(t) and p(r) and obtain the following. We
remark that a,(7) may be regarded as a vector field along the curve p(z) hence its covariant
derivative Da,/dt makes sense.
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SuBLEMMA 14.3. We have

dt drt
Da . dp(7)
; <d—rk - kak)ekn = 02,2(“1“ —di > (14.4)
Here Oy y{ay, dp(v)/dr), O, 2{ay, dp(t)/dT) are terms estimated by
d . d 2
I S R T
dt k LA(S'x[r—1/2,t+1/2]) dr Li([r—1/2,t+1/2])

oo 57

Z ak (T) ekti

k

<o
L1 (S x [z

L2(S' x[t—1/2,t+1/2]

dp(7)
dt

>2
Li([t—1/2,t+1/2])

where || ||z is a Sobolev L2 norm (the sum of the L* norms of the derivatives up to order m)
and m is a large but fixed number.

Proof- We put
a(t) =Y a(r)e".

Since the problem is local on 7, we consider at t = 7,. We take a normal coordinate at
po = p(7o) and identify its neighborhood with Euclidean space. We consider

exp:D,(po) x L2(S; D(e)) » L2(S"; D1.(po))
such that
exp(p. a(t)) = exp,a(t).

Here D(g) is the metric ball in R?" of radius ¢ centered at 0. exp is a smooth map between
Banach manifolds. We identify D(¢) with D,( p,) by an exponential map. Let t — (g(7), b.(1))
be a curve in D,(py) x L5(S*; D(g)) such that (g(0), bo(t)) = (po, 0). We then have

dq(@)  db(0)

d
T exp(q(e). bi(t) = =+ =5

Therefore we have

dp(x) d

d
H% eXP,((a(t)) — Ry e a.(t))

L3 1(8? % {to})

dp(z)
dt

2
< Cm<|| adt) |l r2stxre—1/2,c 41720 + > .
L2([e—1/2.1+1/2])

_ da, (1)
dt

< Clla(t) ||%,%1(S1 X[t = 1/2,t0+1/2])

— €XPy, s,
dt P Liil(sl)
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We put g+(t) = [ Y40 @€ 13 - (0) = D<o @€ [ 12 go() = |dp(x)/dt|. By using
elliptic regularity, we have

t+1

<Cy, J (g+(x) + g-(x) + go(x)) dx.
LA(S' % [t—1/2,1+1/2]) =1

Z a (T) ekt

Hence using Sublemma 14.3, we have

dg; Z +4g+ — C<Jr (g+(x) +g-(x) + go(x))dx>
t—1
d + t+1 2
< g+ C< J RZCKYECR !Jo(x))dx> (14.4)

9] < C(f G909+ go(x))dx> .

T—

We remark that in case (M, J) = C" with standard complex structure (or in case when
J is integrable) we can take C = 0 in (14.4). Then Lemma 11.2 follows immediately. The
main part of the proof is an estimate of the contribution of the nonlinear term in (14.4).
Next we estimate

SuBLEMMA 14.5. For each ¢ there exists ¢ such that if Diam(h(S* x [ — L, L])) < &, then
g+ (1), golr) <eforre[— L+ 1, L —1].
Proof. It is obvious that g (1) < & By elliptic regularity we have
Ip(@)lc: < C. (14.6)

forte[— L 4+ 1/2, L — 1/2]. Suppose that |dp(zy)/dt| > 6 for toe[— L + 1, L — 1]. Then
we take a coordinate and find i such that

dp;(v)/dt > ¢é > 0.
Then by (14.6) we have
dpi(r)/dt > co/2
for te[ty — ¢6/2C, 19 + ¢8/2C]. We may assume ¢5/2C < 4. Hence we have
pi(to + ¢8/2C) > pilto) + c26%/4C.
Therefore by assumption we have ¢26%/4C < C’g;. Sublemma 14.5 holds. |

We use (14.4) and Sublemma 14.5 together with the following Lemma 14.7. Lemma 11.2
then will follow from elliptic regularity.

SusLEMMA 14.7. For each C there exists ¢ independent of L, such that if ¢g+,g-,
go:[— L, L] — R satisfies (14.4) and if |g+|, |go| < € then we have

lg+ ()| < C'emintlr=LlJe+LD)
lg_(1)] < C'e mintle=LlIt+ L)

lgo(7)] < C’ e~ min(lt—Ll. [e+ LD,
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Proof of Sublemma 14.7. The proot 1s an analogue ot [ 24, Sublemma 9.8; 28, Sublemma
7.20]. We choose C’ later. We prove

|g +(1)] < C'(ge™min(t=LLIT+LD 4 gh2)
|g_(r)| < C’(ge_min(lt_L|‘|r+L|) + gk/Z) (148k)
lgo(1)| < C'(ge~mintlt=ELIT+ LD o gk/2)

by induction on k. (C’ is independent of k.) When k =1 the inequality follows from
assumption |g+|, |go| < & The case k = oo is the conclusion. Suppose that (14.8.k) holds for
k, then it follows that

t+1
f (g+(x) + g_(x) + go(x))dx < 100C" (e~ mindr LI It+LD 4 gh/2) (14.9)
=1
We put §.(t) =e~ "™y (1). Then by (14.4) we have
dg +
dt

> C<Jf+1(g+(x) +g_(x) + go(x))dx>2 -

=1
> _ IOOOOCC/Z(Se—min(lr—L|,|r+L|) 4 8k/2)26—(r—r0)'

We may choose ¢ and C’ such that the

C \[0’3 10000(:/2(8e—min(lr—L|,|r+L|) 4 gk/Z)Ze—(r—ro)dT

o

!
<C/8(k+1)/2+ c (03/26—min{|ro—L|,|ID+L|}.

100~

Hence

7

A ’ C —min — 1 A
g+(T0) =g+(To) < CS(k+1)/2 +m83/26 in{|to— L|, |t + L|} +g+(L)

< C/S(k+1)/2 4 C/e—min{|rO—L|,|lo+L|}8.

The first inequality of (14.8.k + 1) holds. The proof of the second inequality is similar. The
third inequality of (14.8.k + 1) is then obvious from (14.4) and the first and the second
inequalities of (14.8.k + 1). The proof of Sublemma 14.7 is complete. |

The proof we gave above is an analog of the argument by Uhlenbeck used in the proof of
removable singularity theorem of Yang-Mills conncection.

A different proof (based on local Hélder estimate of integral operators P, T which we
define later) is due to referee. We give an outline of it below. The proof is similar to [4, pp.
166-170], by Sikorav (which proves a similar estimate in case of h:D?*(1) - (M, J)).

It is easy to see that Lemma 11.2 is equivalent to Lemma 11.2". So we are going to prove
Lemma 11.2". Let h: Annu(r, 1) - (M, , J) is as in Lemma 11.2". We put p, = h(zy) where
zg € Annu(r, 1) and

h(z) = (exp,,)” H(h(z)). (14.10)
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We regards T, M = C" and h: Annu(r, 1) > C™. Let U be a small neighborhood of 0 in C”.
There exists geI' (U, Homg(C", C")) such that when we identify U and a neighborhood of
Do in M, we have

Oh = 0h + q(h)oh. (14.11)

(Here dh is defined by using the almost complex structure J of M and 0h is defined by using
the standard complex structure of U = C".) Also we have

q(0) = Dq(0) = 0. (14.12)
(14.11) and pseudoholomorphicity of h implies
oh + q(h)oh = 0. (14.13)

Let 4:(0, c0) - [0, 1] be a cut-off function such that

;L(t)={() t=1

1 t<e 12
We put
hyi(z) = A(2)Ar/)2)) h(z) (14.14.1)
g1 = 0hy + q(h)oh,. (14.14.2)
It is easy to see that
lg1(2)] < C(1 + r/|z|?). (14.15.1)
sup|lq(z) || < ofey). (14.15.2)

Here o(¢;) —» 0 as ¢; — 0. We put

hy(z") — hy(z
(Hy2h1)(z) = Sup{% Z,ED(I)}
We use it to prove
(Hyphy)(e) < c<1 +#> (14.16)

— 1 9(0) -

P“"%UC—Z‘Z“‘M

Ta(?) = lim J f 9 _d¢ AdT (14.17.2)
=0 JJulle==1ze e < (E—2)

We use the fact 0 P =1Id, 0 P =T (see [4, p. 166]) to find




e

m
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(14.16) then follows from (14.15) and the boundedness of P, T with respect respect to an
appropriate local Holder norm. The proof of boundedness of P, T with respect to a local
Holder norm is similar to [71]. We omit the detail. (See [4, pp. 166-170].)

We next put

ha(z) = A(e?2) e ?r/ 2] )h(z)

g2 = Ohy + q(hy)0h,.

It is easy to see that

192(2)] < C<1 +#> (14.19)

Using (14.16)-(14.19) in a way similar to [4, pp. 166-170] using [71] (and in a way similar
to the proof of (14.16)), we obtain the conclusion of Lemma 11.2". (We omit the detail.)

0,,{41%5’ of Hhe gamge acton P considor case of nonnodal un stalts. domain Y mat

We now@e Proposition 12.2§Iby contradiction. Our proof is similar to Donaldson’s d‘ M‘V?
argumentin [ 12]. (See also [23].) Let ; = (X,,, h,) € C.4,, (M, J, B) be a sequence. Suppose “‘ easy or
that o; converges to e C.4, ,(M,J, p) but is not equlvalent to any of the element of eg )

s, (0)/Aut(s). We then can take a representative of o; = (X,, h,) such that £, =X, for - unti
(i€ deform.o X resolve, s CONVErging to zero. By the definition of the topology on the space of

stable maps, after adding marked points, X, converges to X,. In particular, outside of the

neck region K,..x(Z,), our semistable curve X, is canonically diffeomorphic to X,. Hence

there exists uje C(E, — Kyee(0); hETM) such that

hi(p) = expu(puil p) (14.20) hs‘. =EN) (,u")

on Xy — Kieex = 2, — Kpeex(0). One the neck region, we can use estimate Lemma 11.2" as
follows. We choose ¢ later. Then by assumption, we find ¢ such that if i is enough large then

Diam(h,(D, (1) — D, (R:L, ) <& (14.21)

Let £, , and Z, ,, be two components of X, containing the singular point x. We define
a conformal isomorphism

i (Dx (1) — Dy (RS, ))U(Dy (1) — Dy (R 1, ) = Annu(p™*R77%, 1)

(note R, =Ry, )by

-1 -1 -1
u expx,, (Z) z EDx,,(:u) - Dx,, (Rx,,,al- V)
Yix(p)=9" _4 24 n (14.22)
H ai,v/expxw (Z) ZEDXW(M) - wa(Rxw, %0 )"
Now by Lemma 11.2" we have
|h lpl x ”C‘(Annu(u"R_ s 1)) <C. (1423)

\\\ zhe '2:\1.

Mhiller < C ||01 <C
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on )((va(u) — va(Rx_v,lai,,,))- We also obtain from (14.23) that
Diam(hy(D,(R™*) — D, (R:}, ) < CR™. (14.25)
Hence
lui(z) | < Cllz]l (14.20)

on h,(D, (1) — D, (R5, 11)) We use these two estimates to show the following:

SusBLEMMA 14.27. There exists uy eI (Z,; h* TM) and 4; — O such that

(14.28.1) u coincides with u; on | ), J
ZCI- - Kneck-
(14.28.2)  |[(Dy, 05 )tii || Lok, (on) < 4i-

Za,v - Dx,,(é_le_,,,lai ) < za - Kneck(a) =

xesing(Zov,,)(

Proof. Choose §; — 0 such that §;R, , — co and take a cut-off function y; such that

0 r<< 51'_ 1R>C_v,11.'
2:(r) = —1p-1
1 r> 251 vas%"

We have
supldy;/dr| < Co;R (14.29)
and dy;/dr is supported on [§;7 'R; %, 267 *R;%]. On D, (1) — D, (R; % ) we put
ui (x) = zillxJui(x).
Then by (14.29) and (14.26) we have

0y
dr

lui(@) || + (D4, 05, )ui(z) | < € (14.30)

(D, 05, )1 (2) | <‘ (Iz])

if Iz € [67 'Ry b, 267 'REL D TF |z €067 'R %, 267 'R ] we have
(D335, )u{ (2) = (D B, )i (2).

On the other hand by (14.19) and the fact that h,, and h are both pseudoholomorphic on
K, . (0), we have

(D105, uillco < Clllhille: + i) i co.

sup (D3, 05, )1 (2) ]| > 0. (14.31)

121057 R, 5 2857 R; 2 1

Toti

Using (14.30) and (14.31) and the fact that the volume of the domain of z satistying
Izl € [6;7 *Ry5,, 26; 'R 3] converges to 0, we obtain the required estimate (14.28.2). The
proof of Sublemma 14.27 is now complete. O
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We put u; = uj — Q, O(Dhﬁzd)(ug'). Here

LPZhiTM ®@ A™(X,)) i
. -

o- E, 1. and

LP(Z, hETM @ A%1(Z,))

I:L(Z,: hETM ® A%L(Z,)) - ;

is as in Section 13. It then follows that (Dhﬁza)ui = 0mod E,. Namely u; € ,,p,,. We use
Sublemma 14.27 and (14.25) to obtain an estimate

sup dist(hz, (p), hi(p)) < Cii - uwwwgeh (14.32)
’ )
We now put ‘;‘"osgaﬁ:nz Pdf“

ex “\w\) o
() = expiy B (p) = exPre (14.33)

(s, p) = expun(sie(p). = h. o h he

We show
SuBLEMMA 14.34. lim,, ”HE,gEﬁ hi(s, )|le = 0.

Proof. It is easy to see that

s eXPrp (g, (P)) — sui(p)

converges to 0 as i —» oo in C” topology outside the neck region. Hence it suffices to
estimate 5Eﬁhi(s, )on D, (@) — D, (R: % ). There we use the fact that h;_, is holomorphic
and use Lemma 11.2 in the same way as we did to prove (14.24). We then obtain

g, ulle: < C. (14.35)
Applying (14.35), (14.24) and (14.30) in the same way as we did to prove (14.31) we have

sup (D, 8z Ju(2) | < Clllhille: + Mg lle) 1 llco — O
lizll ¢ [o,0,R%,]

Sublemma 14.34 follows. n Spedﬂl clﬁz
e

Thus, for each s € [0, 1], we obtain an approximate solution h(s,"): X, — M of (12.17).
For sufficiently large i, we can make an exact solution of {12.17) from it by nsing the
argument of Section 13. Namely we obtain maps hi(s,*): X, — M for s € [0, 1] such that

bust, also need to Pf‘é 0. p) = (P (1. p) = I o(P) (14351)
ib inbo-Ye focal stice

Os, hi(s, ) = O mod E,

oh:
‘ ' 50 as i — oo. (1435.3)

Js
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We remark that linearized equation for (12.17) 1s of maximal rank. It tollows from
implicit function theorem that the family of solutions we constructed in Section 13 is one of
the maximal dimension. We then can use the fact that hi(1, p) = h_, (p) to show that family
hi(s, ) for s € [0, 1] is contained in the family of solutions we constructed in Section 13.
Therefore hi(0, p) = hi(p) is also contained in the family of solutions we constructed in
Section 13. The proof of Proposition 12.25 is now complete. |

= Coum’:f L{’l’,’éy of Kuranisht

15. GLUING

We are going to glue the charts constructed in Sections 12-14 to obtain a Kuranishi
structure. To glue the charts, one trouble is that the moduli space C.#,,,(M, J, p) can be
quite pathological, because it is in general the zero set of a continuous function which can be
an arbitrary closed set.

The second trouble is to find an appropriate way to fix representative of elements
of Cl,(M,J, ). We remark that the representative is well defined modulo the
group Diff(c,z), the group of the diffeomorphisms fixing marked points. Namely
Mym(M,J, B) is regarded as a subspace of (J(X)x Map(Z, M))/Diff(c, z), here J(Z) is
the space of all complex structures on X and Map(X, M) is the space of all maps
from X to M. So if we try to embed .#,,(M,J, f) to a single function space, we
need to make precise the definition of (J(X)x Map(Z, M))/Diff(c,z) by fixing function
space and prove some kind of slice theorem, etc. Then we immediately meet a trouble
directly related to the stability of complex structure, etc. The difficulty is that Diff{o, z)
is very far from being compact. In a similar problem of Gauge theory, slice theorem
(see [23, Section 3]) is proved. In that case, the proof depends on the fact that the
image of the group of gauge transformations of L?. class into the group of gauge
transformations of L} class is compact. This is because the Gauge group (SU(2)
for example) is compact and we can then use Rellich’s theorem. The corresponding
fact in our case is not true. Moreover the isotropy group of the action of Diff{s,z)
for some element at “infinity” of J(X)x Map(X, M) may be noncompact. This causes
atrouble in studying the space (J(X) x Map(Z, M))/Diff{(o, z). However by using the fact that
isotropy group of element of C.#, (M, J, f) is finite, one may probably be able to prove
a slice theorem in a neighborhood of .#,,(M,J, ). Namely the quotient space
(J(Z) x Map(Z, M))/Diff(o, z) is Hausdorff there. However, because of the trouble we men-
tioned above, we do not use this infinite dimensional space and work more directly without
using infinite dimensional manifold.

locol

lice 22

charts

Let us poimnt out the third trouble to make our charts compatible. The trouble
is that our charts are constructed by solving eq. (12.17) which depends on the choice
of the subspace E,. Unfortunately, it seems that there is no canonical choice of
this subspace. Usually to work out Kuranishi theory, one takes L? orthogonal comp-
lement to the image of the linearized operator to find a representative of the ob-
struction bundle. This is the way, for example, taken by Furuta [32] to study the
case of monopole equation. However, in our situation, we cannot use L? orthogonal
complement to the image of the operator (12.1). The reason is as follows. First of
all we cannot put p=2 in (12.1) since L? function on 2 manifold is not continuous
and we cannot make sense the condition w,(p) = =m,,{q)=u,(p) = u,,(q) we put at the
beginning of Section 12. To clarify the situation, let us consider the dual operator

(Dy, 05, )* 1 LY BETM ® A®N(E,)) — (LE(Z,: hi TM))*
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to (12.1). Here 1/p + 1/q = 1. The dual space (L{(Z,:h¥TM))* contains a delta function
supported on a finite number of (singular) points. Hence there exists a form like f'dz/z in the
kernel of dual operator. This form is not of L?-class. In algebraic geometry, corresponding
phenomenon is observed. Namely one needs to study logarithmic forms to consider
Dolbeault cohomology of singular variety. Thus it seems difficult to find a canonical choice
of E,. Because of this problem, we take an arbitrary choices locally and “glue” them to
patch the charts. Then the Kuranishi structure itself will depend on the choice of such.
subspaces. However the cobordism class and hence the fundamental cycle of it is well
defined, as we will prove in Section 17.

Now we start the gluing construction. The construction of the obstruction bundle
E,; will be done inductively on neighborhoods of the strata, beginning with the ones that are
minimal (and nonempty) with respect to the partial order <.

Let 4, .(M,J, )T, g,,B,,0) be such stratum. Namely we assume that
My (M, J, AT, g, By, 0') 1s empty if (T, g,, B, 0 )<(T, gy, B, 0). It follows that the
stratum .#, (M, J, BT, g,, Py, 0) is compact. By Proposition 8.7, there exists such
a stratum.

S0 /,i__ =C /,1 / First we consider the problem to fix a representative of elements of
My (M, J, BT, g,, By, 0). It might seem that an appropriate way is to construct the
ZQ(, universal family of semistable curves over .4, ,,(M, J, B)(T, g,, B,, 0) as a “fiber bundle” and
uoﬁ&" use its trivialization. (This is the way we took to study Deligne-Mumford compactification
M‘& by Au in Section 9.) The universal family, however, is not a “fiber bundle” but is an “orbibundle”
because of the presence of nontrivial automorphism. The trouble is that our space
My (M, J, BT, g,, By, 0) is not in general an orbifold so it does not make sense to say that
universal family is an orbibundle on it. So we take more direct way, that is to specify the

choice of representatives locally.

Let us denote by . the homeomorphism s;'(0)n , — Mym(M,J, p) to an
open set constructed in Theorem 12.9. We choose finitely many elements
1€ Myn(M, J, PUT, g,, B, 0) such that the images of the homeomorphism /; in Theorem
12.9 cover M, (M, J, )T, g,, p,, 0). We put Qti =Imy, N4, (M, J, )T, g,, B, 0).
For each i we fix a representative (X, h,) of 7;. Here h,: X, — M. We remark that we have
already chosen E, < T'(Z,, h¥(TM)® A*Y(Z,. J.)). Let Q. be a closed subset of Q. such

. P that their interiors cover .4, (M, J, pT, g, By, 0). d‘% M
_ﬂlff s S Roughly speaking we tak?[E = Dseq, lﬂ To be precise one needs to identify ( ’#/’

a nontrivial C TS, hH(TM)® A%L(Z,, J)) as a subspace of I'(E, h*(TM)® AL(E)) in a 'b/WMzs
'b’ﬂﬂﬂﬂ"’m&? Way as canonic We need to find a “canonical” map from X to XZ,. coming (h
requemm In order Whle we modify eq. (12.7) a bit in the way we will explaln h ore.

m the OhoUlLS  below. O arcl smoolhly allhough A(Z)xTT T isn't diftwrizaile

of E‘i’, Let € geform,s, X resolve,r,» W€ consider ({,0)e ;. We obtain (X, , hi;o) by Theorem

12.9. (Hereafter we write X , in place of X, to clarify that it is constructed out of . .) We
recall that for each ([,0)e ; we embed E, = C*(Z, , hfac.co( TM) Q@ A®YZ, ) as
follows. We remark that we have fixed a representative of (X, ¢, fexact,c,0) DOt only its
equivalence class. We may regard K,pe (7)) S 2, ¢ since Kgpe(7:) € Z;, is disjoint to
Keck(t;). For each p € Kpq.(7;) E X, we consider the parallel transport Pary, () 5 - 1ts
complex linear part induces an isomorphism »

AO‘l (Kobstr(ri)) ® h;lf T™ = AO,l (Kobstr(ri)) ® hjxact,C,OTM-

We use this isomorphism to regard E,, = C*(Z, ¢, h¥aerc.ol TM) @ A>HZ, ).
Now let (X, h) be a pair of a semistable curve and a map ¥ — M. We assume that it is
equivalent to an element close to (X,, h,) with ¢ € Q. in the following sense.
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There exists { €  geform,0 X resolve,c aNd a biholomorphic map 5:XZ; ; = X4 such that

.
Sup dist(hesaenc.o(p), hn(p)) < min L0radM) 41
p i 100

(15.1)

Then by taking Q. enough small, we have { €  geform,;, X resolve,r; and a biholomorphic map
§:X — X . such that

injrad(M)

sup dist(hesaer.z.0 H(p), h(p)) < min +d,2d b (15.2)
) , 100

We use 9:X — X, ; and parallel transport Pary__ . g, 4, t0 embed
Emb, g E, = C*(Z, *(TM) ® A®'(Z)). (15.3)

U} ! % orver
Now we modify eq. (12.7) as follows. WM V(f,/g') Sé‘:“é/‘lf/ ffe} f/eﬁ;:”‘: d‘%ﬁa,
0sh=0 mod @ Embg.(E.). belity Laolueg of Aut{2)actio
(15.9) 7 and pregluing Construc gy,

We need however to handle with one more trouble. Namely the pair (¢, 3) is not unique. /4{.[0 /%fc
In case when there is no unstable component, X, = X, .. implies that " = y{ for some éﬂ La
ye Aut(X,), and Aut(X,) is a finite group in this case. Let y:X =X . denote this h va,
biholomorphic map. Requiring that ({', 3o y) also satisfies (15.2), we have y € Aut(z;). Since (%f_e
the space E, is invariant of the action of Aut(t;), eq. (15.4) is independent of the choice of
({, 9) in this case.
However, if there are unstable components, 2, . = X, .- does not imply {’ = y{ for some
y € Aut(t;). The extra symmetry is parametrized by a neighborhood Lie(Aut(X,))o of 0 of
the Lie algebra of the group of automorphism of X, (Lemma 13.18)..So we have
Vo € Lie(Aut(X,))o, y € Aut(Z,) such that " = yy,{ and there exists a biholomorphic map
VYo i = X, . Requiring (I, $°yy,) also satisfies (15.2) we have y € Aut(t;). The trouble
here is that E, is not invariant by the “action” of Lie(Aut(X,))o (in other words by the
isomorphism y¢:%; = X, /). So eq. (15.4) has an extra parameter described by

X
\gb " | Lie(Aut(z, ).

4\90 This is an important point since the heart of “negative multiple covered problem” is
- ‘\ 0
d)&n @\'_“X; presence of unstable component for the stable map.
& o N We need to kill this extra parameter to obtain a moduli space we need. The way to do so
’Qﬁ’u \(“‘ S must be canonical. To be more precise it should be independent of ¢ but may depend on the
data related to ;.
R ¥ o . . o .
\\)‘L a&\ \.6 o We can do it in the following way. (This argument is a kind of center of mass technique
Q(? 3\ J developed by [34]. Another argument is discussed in Appendix.) Let X, € Z,, be the
k9 \g&w Q(\Q union of unstable components minus a neighborhood of singular points. We assume that it
hw 0‘\,“\3)[91 is invariant of Aut(t;). Since we remove neighborhoods of singular points, we may regard
\
.\S°\ R Tones, S Ze -
W N‘ \{J.fg/ Next let dist? : M x M — [0, o0) be a smooth function which is C2-close to the square of
0 bL Riemannian distance in a neighborhood of diagonal and that (dist*")~ ! (0) = diagonal.
¥
o For :Z, — X, , we consider
\
o
(&) T

meandist, (3, (), h) = j distz’(hexact,g,o(x), h9~ Y(x))dx. (15.5)

xeX

\\\\\\\

We use Riemann metric on X, to obtain the volume element dx.
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Since h,, 1s nontrivial on unstable component by assumption (7.4.1), it follows that &, 1s
not LieAut(Z, ), invariant. We can then use uniform convexity of distance function and
\Vdist* (exacr.c.0(x), 971 (x)| < 1 to obtain

82
<7 meandist, (yo(9, (), h):a, b> >c>0. (15.6)
070.4070.5

Namely the symmetric matrix in the left-hand side is uniformly positive. Here we put
Y0 = (Yo.4) € Lie(Aut(Z, ))o, by taking a coordinate of Lie(Aut(X,))o.
On the other hand we can find 4 such that

inf meandist. (yo(8, (), h) — meandist, (8, h) > c. (15.7)

posdLic( Aut(Z,),

It follows from (15.6) and (15.7) that we can choose Q. small enough and can prove that
there exists unique y, € Lie(Aut(X,)), such that meandist, (y4(39, {), ho) is locally minimal. It
implies that we can kill this extra parameter LieAut(X, ), by requiring

meandist, (yo( 9, {), ho) = meandist, (9, {), hy) for any y, € Lie(Aut(Z,))o. (15.8)

We remark that Lemma 13.22 implies the consistency of the condition (15.8). Assuming
this additional condition on biholomorphic map $:%Z, - X, ., eq. (15.4) has moduli space
of correct dimension.

Note that, this way can be arbitrary close to the way we did in Section 12, by choosing
Q. and ;small. Infact we require in Section 12 that expy,_ ,(1x) (hs. .~ *(x))is perpendicular to
LieAut(Z,)o. This condition is asymptotically equal to (15.8). (We do not make it precise
since we do not need it.)

We next remark that in a way similar to Sections 12-14, we can construct the family of
solutions (15.4) with condition (15.8) as follows.

We start with a family of approximate solutions parametrized by  in exactly the same
way as in Section 12. We next use the product ; Lie(Aut(X,))o to parametrize the maps
8,: %, = X . We then apply the implicit function theorem in the same way as in Sections
12 and 13, to find a solution of (15.4) parametrized by , x ; Lie(Aut(X,)),. Let us denote
it by he . s.c)- Now on this family we consider the condition (15.8). By (15.6) we have

62
(7;neandistri(yo(9i, Ci)s heugs, o) a, b> >c >0 (15.9)
070.4070,5 ' )

Furthermore, by (15.7) we have

inf meandist, (7o($, (i), heuruacy) — meandist, (3, £;), heus.c)) > ¢ (15.10)

voelLie(Aut(X.,))o

On the other hand by taking , small we may assume that

- meandist (%, he u.cyu0.00) | <

))O,a

since the approximate solution we start with is independent of (3, {;). Here ¢ is a number
sufficiently small compared to ¢ in (15.9) and (15.10). It follows from (15.9), (15.10) and

(15.11) that we can find submanifold , = [ x ; Lie(Aut(X,)), parametrizing the solution
satisfying (15.4) with condition (15.8) and that , —  is a difffomorphism, if we replace



Daim 967{7(96:70’) =7 all elormts of Uy (sufdose tog) satisfy @ en p-loo]
=) Psg Maps (Z,u)e(/_; to (3:,4') and I:SOMLMLeﬂ/a/z'ig.
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» by a smaller one if necessary. (We remark that (15.8) is written as

meandist. (yo(%:, (i), heusy) = 0.)

n

))O,a

Thus we obtain ,, and hy,:X; - M for ({,u)e , such that h, solves (15.4) with

ondition (15.8).
condition (15.8) This (s supposeol to dlefine coordinate changes &pq.

LEmma 15.12) There exists ¢ > 0, with the following properties. If (h, ) solves (15.4) with
condition (15.8) and if there exist { € ; geform X o.resolve ARd a holomorphic map p:% — X,
such that

sup disr(hexact,C,O(p)a h.u(p)) <eé.
p

Then there exists ({",u')e , and u:X — Xy such that h = hg o pu. The pair ({',u')e , is
unique up to the action of Aut(c). SO 35wes M& additional 41%{;&&;’1’" "
I Issue in ebsbﬂgm

The proof is the same as the argument of Section 14. jpn @ ™ ?'\

We next construct the coordinate change. The key observation is that neither eq. (15.4)
nor the condition (15.8) depends on o.

F 99 We require that U, = ,/Aut(o) satisfies the following:
0

'
.. mygnSly 10 "'76657‘7; .
?YO . .L (15.13) If pelmy, andif peQ, then o € Qti,l ;0 atw:l/% must :nA‘e {-‘oo-tpm"l: un’%— ué. S‘;ne[[l bet
We can assume (15.13), since Q,, is closed. for ,ﬂn:,"b G") '3.%.- 9".& d'a"' lUs)-?O .. S0 rcq.ﬂr R

We consider p e Im iy, .4, (M, J, B)T, g,, B, 0). (15.13) implies E, = E,. We then 0”‘6'/ JC*‘WMS
conclude that if (Z, h) solves (15.4) for p with condition (15.8), then it solves (15.4) for ¢ with af coordinate
condition (15.8). ch anges

Therefore by using Lemma 15.12, we find the required embeddings ¢,,: , =
and ¢,, in Definition 5.1. Properties[j5.1.4!—!5.1.7%are immediate from construction. Thus,
we have constructed a Kuranishi structure fon a neighborhood of the stratum
AMym(M, J, BUT. gy, By, 0). ref-=2 ... howabeut cocycle cond ? /narmnlbum@ 4

Now we are going to construct a Kuranishi structure by an induction on the partial
order <. Namely we assume that we have glued the charts and constructed a Kuranishi
structure on a union of neighborhoods of .#,,(M,J,pNT g, B,,0") with
(1, g,, By, o)y <(T, g,, ., 0) and are going to construct a Kuranishi structure on a neigh-
borhood of . %, ..(M, J, (T, g,, Py, 0).

By induction hypothesis, Theorem 11.1 and by Proposition 12.25, we have finitely
many t; contained in some .#, (M, J, YT, g,, By, 0") with (T", ¢, ., 0') <(T, g,, By, 0)
and maps V. :s; (0) » C#l, (M, J, ) such that .#,,.(M,J,BNT,g,, By, 0) minus
the union of images of i is compact. We then choose finitely many t; on
My (M, J, BT, gy, By, 0) such that

U Tm g0 I 2 4,,0(M. J, B)T. gy, By 0).

Here /;:s; 1(0) - Cly,(M,J,p) is the map constructed by Theorem 12.9. Now we
repeat the argument of this section.

Choose closed subset Q. < Imy;, Q, <=Imy; such that its interior cover
My (M, J, P)T, g, Py, 0). Foreach o e .4, (M, J, B)T,g,, p,, 0) we put

Eaz ® En@ ® Er{-

ceQ,, oeQ,;
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Here to identify E, = L1(X,; h¥TM ® A®!(Z,)) we use parallel transport in a similar way.
(We remark that we can identify Kq(0) = Ky(t;) by a biholomorphic map.) We use this
subspace to define an equation similar to (15.4). Condition (15.8) is defined in the same way.
Thus by the same argument we used to study the first stratum, we can extend the Kuranishi
structure to a neighborhood of .#, .(M, J, PUT, g., B, 0).

Thus the proof of Theorem 7.10 except the construction of stably almost complex
structure is complete.

Let us turn to the proof of Theorem 7.11. (7.11.1)-(7.11.3) are immediate from construc-
tion. Also the differential D7, of the projection to the Deligne-Mumford compactification,
is surjective by construction. Let us consider D, ev|p . , the restriction of the differential of
evaluation map to the kernel of D,x,.

We remark that ker D,n, = T , is identified with the kernel of operator (12.16). If
ue LY (X, h¥TM) is an element of ker D, 7., then

D,ev(u) =(u(z;):i=1,... , m)e Ty M.

Here z4, ... ,z, are marked points. Hence the surjectivity of D, ev|p ,_is equivalent to the
surjectivity of the restriction of the operator Il ° (D, 0, ) (in (12.6)) to

(ue LY(S,, BETM) u(z;) = - = u(z,,) = 0}.

The surjectiviy of it holds if we take E, is enough large [3]. The proof of Theorem 7.11 is
now completed. Ll

16. ORIENTATION

In this section we show that the Kuranishi structure we constructed in Section 15 is
stably almost complex. It then follows that it is stably oriented. Hence by Lemma 5.17 it is
oriented.

We first prove the following.

Prorosimion 16.1. The Kuranishi structure of C.My (M, J, ) we constructed has
a tangent bundle.

Proof. Let o,pe Clly (M, J, ). We assume that pelmiy,. Here Vyis, H0) -
Cll ym(M, J, B). We consider 7; as in Section 15 such that

Eaz ® Eria Ep= ® Eri-

geQd,, ped,

/

We may assume that pe Q. = o€Q,. Therefore we have E, = E,. We recall that the
Kuranishi neighborhood U, = /I, of ¢ is by definition the set of ({, 1) such that

ggl’l =0 mod EJ

divided by Aut(c) and the Kuranishi neighborhood U, = /T, of p is the set of ({, h) such
that

(ih =0 mod E,,

Co

Wsrlz :
Cocyctp
"/f'/b‘{oo
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divided by Aut(p). Since E, = E, we have , < ,. This is the map ¢, in the definition of

Kuranishi structure. Now we take a point ({, h) € ,. By construction the map

LP(Zh*TM ® A%HZ)))

g o (Dy0s,): LE(Z;:h*TM) — E

P

is surjective and the direct sum

ker(Ilg, (D, 0s.))
——b T ‘
LIE(AMI(zp)) @ (C,h)( p,deform X p,resolve)

is the tangent space T'¢ 5 ,. Similarly

T g,derorm X ag,resolve /-
Lie(Aut(Z,)) O Tieml oaer resotve)

Tew o=
We remark that

T ( deform X resol ) :
T o Cal =t odeto oresovel 29 +m=3
alZ, A gm Lie(Aut(X,)) !

Lie(Aut(Z,))
Tn [Eo_‘lC'%g‘.,m‘. @ @ Tx\.za,v ® waza',w

v:stable component of X, x: singular point of X,

Lie(Aut(Z,))

T(C,h)( a,deform>< a,resolve)

if2g +m<3.

Hence the restriction of Il © (Dhgz;) to ker I (Dhgzg) induces a surjective map
ker HEOO(D;,EEL_) - E,/E,. (16.4)
The kernel of the map (16.4) is ker Iy © (Dhgzg). Thus we obtain a required isomorphism

. T(C,h) 4 Ea
N

D, ,: .
""Tew , E,

The commutativity of Diagram 5.7 is immediate from construction. The proof of
Proposition 16.1 is complete. O

ProposiTioN 16.5. The Kuranishi structure of C.My,(M, J, f) we constructed is stably
almost complex.

Proof. The proof uses family of indices and is based on the fact that symbol of our
elliptic complex is complex linear.

We first cover C.#, (M, J, p) by finitely many charts xpti:sr_il(O) - CM ym(M, J, B).
For each (X, h)e ., we have an operator

(Dys): LY (S ¥ TM) — LP(Z,:h*TM ® AT1(%)).

The operator (D,,gzﬁ,) is not necessary complex linear since the complex structure on M is not
necessary integrable. However the symbol of (D,,a;i) is complex linear. We divide (D,,gzi) to
complex linear part and anti linear part, then the Complex linear part is again a Fredholm
operator. We denote it by (Dhgzg)’.
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By construction (Dhgzg)' is glued on the part where charts are glued by ¢,,. We construct
a family of operators parametrized by x[— 1, 1] by

Pey, = I(Dhgz;) +(1 - t)(Dha_z;),-
For each t we find F, = LP(Z,: h*TM ® A®1(Z,)) such that

L2 h*TM ® A%1(Z,)

Hpvopg,h,r:Lllj(Eg:h*TM) d F

is surjective for every ({, h) and t. We assume also that F, is a complex linear subspace of
finite dimension, that is invariant by Aut(z), and that its element is a smooth section
supported in K,(r). Here we embed F, = LP(Z.:h*TM ® A®!(Z,)) in a way similar to
Sections 12, 13 and 15. We may assume that E, = F.. Using F, we define

F,= @ F,
geld,
in a similar way to Section 15.

Now we construct a bundle system on the space C.#, (M, J, p) x [0, 1] as follows. On
the charts ,x[— 1, 1] we take two orbibundles

LP(Z;: h*TM @ A%(X,)
F,

Fi(( ht)= ker<HPC,hJ:L’{(ZC:h*TM) - > S LY(Z :h*TM)
F2,a(§a hs t) = FJ-

We can construct the isomorphisms in Definition 5.6 (which defines the notion that
Kuranishi structure has a tangent bundle) in the same way as the proof of Proposition 16.1.
Hence we obtain a bundle system, which we write Index P, ;.. Since the index is of constant
rank when one moves ¢, one can use homotopy lifting property of usual vector bundle to
show that the restriction of Index P, to C.#,(M,J,f)x {0} is isomorphic to the
restriction of Index Py, to C.l, (M, J, f)x {1}.

On the other hand, since (D40s,)" is complex linear it follows from definition that the
restriction of Index Py, to C.lly (M, J, f) x {0} is a complex bundle system. Hence using
the fact that TC.#,,, is a complex orbibundle and the following Lemma 16.6 we can prove
Proposition 16.5.

LeEmMA 16.6.
UUndex Pyy.le.s, aapxio + T [TCM ] =[TCH (M, J, B)]
in KO(CM (M, J, B))if 29 + m = 3 and
Lindex Pgylc.n,mr.py 0y = [TCA y (M, J, )]

if 2g +m < 3.

- - LP(E, h*TM ® A% (T
Fu(g,h,())=ker<nFooag,k:LI;(zC:h*TM) N (% @A~ g))>,

F,
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we can construct an 1somorphism

F a Ca ha 0 Fo' A
L ( )_ = — N T(Csh) P = ker(HE” © (Dhoazg)) (‘B 77:* [Tc,ﬂg‘m]
ker(Ilg, (D, 0s,)) E,

in the same way as the proof of Proposition 16.1. It follows that we have an isomorphism

F. F.
ﬂ*TCe%g’m @ Index PC,h,t |C€'//H.M(M’J’ﬁ)le0} = Tce%g'm (M, J, ﬁ) (‘B @ < : ‘> .

Here
D F. F,
1 Eti’ ET
is a bundle system (G, ,, G, ) such that if {i;, ... ,iy} = {i|c € Q,} then
N (F. F
G o G .) = fim’ Tigj) .
( B . ) J:€|_>1 <Efim ETi(n)
Since

F. F,
@<E—E—>

is a trivial bundle system by Definition 5.9 it follows that
[Index PC,h,r] |ce,,//g,m(M,J,/3)x{o} + n* [ch%g,m] = [TC'%g,m(Ma J, B)]

in KO(C.M ;,,(M, J, B)), as required.
The case 2g + m < 3 is similar. |

CHAPTER 4: APPLICATIONS

17. GROMOV-WITTEN INVARIANT

In this section, we use results of Chapters 1-3 to construct Gromov-Witten invariant for
arbitrary symplectic manifold. We first extend our definition of Kuranishi structure to
Kuranishi structure with boundary.

Definition 17.1. A local model of n-dimensional orbifold with boundary is a pair ( , I)
where T is a finite group which has a linear representation to R*~! or R”, and is a
I' invariant open neighborhood of 0 in [0, 00) x R"~! or R”. We assume that the action of
I'on is effective.

Definition 17.2. Let X be a compact metric space. An n-dimensional orbifold structure

with boundary on X is an open covering X = ( J;U;, local models ( ;,I';) of n-dimensional
orbifold with boundary for each i, and homeomorphisms ¢;: ;/I'; = U; which satisfy the
same properties as Definition 2.2.

We can define an orbibundle on orbifold with boundary in the same way. The definition
of orientation of orbifold with boundary is similar. Also we can define a notion of multi-
section and prove a transversality theorem in the same way.
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Definition 17.3. A Kuranishi structure with boundary of dimension n on X is a collection
(Up, Epp, Sy, Wy 0 pgs Pg) fOr €ach pe X such that

) U,= ,/T',1is a germ of orbifold with boundary and E, is an orbibundle on it.

) s, is a germ of (single valued) continuous section of E,,.

(17.3.3) 4, is a germ of homeomorphism from s, *(0) to a neighborhood of p in Y.

) Let ge,(s, *(0)). Then there exists a germ of an embedding ¢,,: U, — U, in the
category of orbifolds, which is covered by a germ of an embedding of orbibundle
(7)1%1 Ey > E,.

(17.3.5) 5,0 @pg= Ppg©Sqs Wp©o Opg = Vs
(17.3.6) If rey,(s; 10), then @u° @pr = Qprs Ppg® Pgr = Ppr-
(17.3.7) dim U, — rank E, = n is independent of p.

We define orientation and stably almost complex structure for Kuranishi structure with
boundary in the same way as in Section 5.

The following relative version of Theorem 6.4 can also be proved in the same way. Let
X =(X,( T, E,s.%,) be aspace with Kuranishi structure with boundary. Let K = X
be a compact space and K™ be its neighborhood. Let (P,((U,, ¥4, 5,): PEP), @pg> Ppq) be
a sufficiently fine good coordinate system of X. (Good coordinate system on Kuranishi
structure with boundary can be defined in the same way as Definition 6.1.) Put
P(K) = PnK".

LemMma 17.4. Suppose that there exists a sequence of smooth multisections sq 4, for each
p € P(K) such that

(17.5.1)  S0,p.n° Ppg = Ppqg°S0,q.n>

(17.5.2) lim,-, S 4.0 =S4 in C° -topology

(17.5.3)  S.q.x is transversal to 0.

(17.54) Let ¢p,(x)eU,. Then the restriction of the differential of the composition of any
branch of sq,4. and the projection E,— E,/E, coincides with the isomorphism
®,,: Ny U, = E,/E,.

Then there exists a sequence of smooth multisections s, , for each qe P such that

(17.6.1)  S,0° @pg = Ppg©Sq.ns
(17.6.2) lim,.s,, = s, in C%topology
(17.6.3) s,., is transversal to 0.

)

(17.6.4) Let @p,(x)eU,. Then the restriction of the differential of the composition of any
branch of s, , and the projection E,— E,/E, coincides with the isomorphism
®,,: Ny U, = E,/E,.

(17.6.5) s, = S0,4.n 01 K if g€ P(K).

q

We can also prove an existence of good coordinate system on X extending a given one
on a neighborhood K. The proof of it is similar to the proof of Lemma 6.3

Let X be an orbifold with boundary. The boundary of X is by definition the set of all
points whose neighborhood is identified to an open subset of [0, o0) x R*~1/T". Let 0.X be the
boundary of X. If X is an n dimensional orbifold with boundary then 0X is an n — 1
dimensional orbifold.

Let X =(X,( ;. Iy, E; 5,,1,)) be a space with Kuranishi structure with boundary.
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Definition 17.7. Let pe X and U, = ,/I', be its chart where p corresponds to p’' e U,,.
We say pedX if p'edU,.

The following lemma is obvious from definition.

Lemma 17.8. Let X = (X,( 4T, E;,5..,)) be a space with n dimensional Kuranishi
structure with boundary. Then the space 0X has an n — 1 dimensional Kuranishi structure
(without boundary) such that 0X x[0,1), together with its Kuranishi structure with
boundary is diffeomorphic to an open neighborhood 0X in X. If X is oriented (resp
stably almost complex) then so is 0X and the diffeomorphism between 0X x [0,1) and open
neighborhood of X is orientation preserving (resp. preserving the stably almost complex
structures).

Now we can use these machineries to perform standard cobordism argument and prove
the class defined in Section 6 is cobordism invariant. More precisely we consider the
following situation. Let X = (X,( ,, T, E,.s,4,¥,)) be a space with oriented n-dimensional
Kuranishi structure with boundary. Suppose

aX=X1U —Xz.

Suppose that f: X — Y is a strongly continuous map in the sense of Definition 6.6. We write
it f:X — Y for simplicity. It induces f|x:X;— Y.

Lemma 17.9.

([1x)e [X 1D = (f1x,)4 [X2D) € H, 1 (Y Q).

Here (fx), ([X:]) is defined in Section 6.

Proof. We take multisections s; on X; such that s; }(0) is the fundamental class of X;.
We extend it to X; x [0, 1) such that it is constant in the second factor. We identify them to
a neighborhood of X; in X by using Lemma 17.8. We then apply Lemma 17.4 and extend it
to a multisection s on X. We use s~ 1 (0) to define a singular Q-chain f[s~'(0)] on Z. By the
same way as in the proofs of Lemmas 6.11 and 4.7, we find that

Of [s~H(O)] = Ts1 " (O)] —f s> * (0)].

Now we start the definition of Gromov-Witten invariant. Let (M, ®w) be a compact

symplectic manifold and let J be a compatible almost complex structure. For e H,(M; Z),
let C.4, (M, J, ) be the moduli space of stable maps of genus g, m marked points and of
homology class f defined in Chapter 2. We constructed a stably almost complex Kuranishi

:Clly (M. J,B) > Cllly y x M™, (17.10)
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([, 2), h]) = ([Z,2]. (h(z1), ... , ~(zw)).

We remark that the map C.#,,,,(M,J,p)— C.#,,, is of maximal rank.

However the Kuranishi structure we constructed may depend on various choices we
made. Especially it may depend on the choice of the subspace E, of LP(Z;hiTM ®
A% L(Z,)), we took in (12.7). Also we fixed and use various partition of unity. We use Lemma
17.9 to show

Tueorem 17.11. I (C. (M, J, B)) e H (CM ;s x M™;Q) depends only on (M,w),
g.m, p and is independent of compatible almost complex structure J and various choices we
made to define a Kuranishi structure.

Proof. Let J, J' be two almost complex structures compatible to the symplectic struc-
ture w. By [33], they are homotopic. So we have a family J; of compatible almost complex
structures such that J, = J for se[0,¢] and J, = J for se[1 —¢,1]. We put

C'%g.m(MaJparaaﬁ)z U {S}XC’%y.m(MaJsaﬁ)-

se[0,1]

In the same way as in Sections 10 and 11, we can define a topology on
CM ym(M,J para, B) and prove that it is compact and Hausdorff.

We take two choices of E, and partition of unity, etc. for s = 0,1 and extend it to
[0,e]u[l —e, 1] so that it is constant in s. It determines Kuranishi structure on
Usero,etort —e, 11C-A# g (M, J5, B) such that its restriction to C.#, ,(M,J,, ), s =0,1, co-
incides with one which we used to define I1.(C.#, ,(M,J,f)) for each two choices.
Therefore in view of Lemma 17.9 it suffices to show that we can define a Kuranishi structure
on CM g (M, J pura, ) extending one on { Jsero, /21001 /2, 11CA g.m(M, J 5, B).

For the choices other than E,, we can extend it to [0, 1] so that it depends smoothly on
s. For the choice of E,, we can use a similar procedure as the gluing argument in Section 15
as follows. For each (z,s) with te C.#, ,,(M, J,, p) we take E, , satisfying (12.7). Then the
same condition ((12.7.1) especially) holds for (7’,s") if they are sufficiently close to (z, s).
Thus we can use it to find a chart in each neighborhood. Using compactness we cover
User2e/3.1 - 2¢/31CA 4 m(M, J, B) by finitely many such charts.

Then for each (a,s), 0 C.4, (M, J,, ) we consider all (z;, 5;) such that (s, 5) is contained
in the charts centered at (t;, s;). Then we use the same identification (using exponential map)
to regard E,_, as a section on X, of A®1E, ® h,T*M. We take sum of all of them. In case
when se[2¢/3,¢] or se[1 — ¢, 1 —2¢/3], we add also E, (the choice we fixed at the begin-
ning). We thus defined E, . (For se[0,¢/2] or se[1—¢/2,1] we take E,.)

Now using these choices we can repeat the construction of Chapter 3 to find a Kuranishi

structure on C.#, ,(M, J s> B). The proof that it is stably almost complex is the same as
that given in Section 16. The proof of Theorem 17.11 is now complete. O

By Theorem 17.11 we have a class T (C.#, (M,J,B))€ Haimc.u,,x sn—uSCAM g X
M™ Q). It induces a map

I, s HXM,Q)®" > H**"(C.dl,,,, Q)

g.m,f
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Iynp(2) = PDONIL(CAl y (M. . ) (17.12)
where PD is the Poincaré duality and \ is the slant product. Here
w="2n{g—1)—2pcy.

Definition 17.13. We call the map (17.12) the Gromov-Witten invariant.

We study the properties of Gromov-Witten invariant in Section 23.

So far in this section, we assumed m + 2g — 3 > 0. But we can define a Kuranishi
structure in the case m + 2g — 3 < 0 as well. In fact proof of Chapter 3 works without
change. We however need to remark one point.

The main difference between the case m + 2g — 3 < 0and m + 2g — 3 > 0 1is that in case
m + 2g — 3 < 0 our curve X is not stable for an element of (X, h)e .#, (M, J, B) (that is an
element in the main stratum). Moreover, the generic element in the main stratum may have
a nontrivial automorphism.

We remark that we assumed that the action of I" is effective in the definition of orbifold.
So this assumption may not be satisfied even in the case when the moduli space
My (M, J, p) is transversal.

This phenomenon actually happens in the following way. Let us put M = S? x T? and
B = [1x T?]. By perturbing almost complex structure we may assume that .#; (M, J, )
consists of two elements which are transversal. We then find that .#{ (M, J, kf}) consists of
elements of k-fold covering of the elements of .#; ((M,J, ) and that .# o(M,J,kp) is
transversal. Then .4, (M, J,kf) consists of finitely many points. However each point has
a nontrivial symmetry. So to find an invariant we need to put the weight 1/# Aut.

But we can proceed as follows and perform the constructions of Chapter 3 without
change. Suppose that we have a neighborhood ,/I'. such that the action of I', is
not effective on .. In that case we change E, as follows. We consider an action
of I', on C*(Z.;A*Y(Z,) ® h*TM). This action is effective and hence we can find a finite
dimensional subspace E, of C*(Z;A%YZ,) ® h¥T,M) on which the action of T is
effective. We change our E, by adding E;. Then in the new Kuranishi structure the action of
T, is effective.

So when we consider again the example discussed above we have an obstruction bundle
evenif ./#1 o(M,J,kp)is transversal. We do not need to change other part of the argument.

Using this Kuranishi structure and evaluation map

ev:Colly (M, J, B) > M™

for m = 1,2, we find an element

ev*([C'%O,m(Ma Ja ﬂ)]) €H2m+ﬁcl+2(n— 3)(Mm; Q) (1714)

which depends only on (M, w) and / and is independent of J and various other choices
involved. If g = 0 and m = 0, there is no evaluation map either. So the invariant counting
the order only makes sense. Hence in the case ¢ = 0 and

2fcy — 203 —n) =2Pc; + 203 —m)(g — 1) =0, (17.15)
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we have a rational number
[Ciy oM, J,[)]eQ (17.16)

as an invariant of (M, w) and . One important case where {17.15) holdsis ¢; = O and n = 3.
This the counting problem of rational curves in Calabi-Yau 3 fold.

We finally consider the case when g = 1, m = 0. In this case the space C.# , is a (real)
2 dimensional orbifold, which is homeomorphic to S2. Hence we have an invariant in the
case when

2Bcy =2fcy +2(3 —n){g —1)=0or 2.
In the case 2fc; = 2 the invariant is
[Ctl | oM, J, BYINIT*[C.l | o] Q.

This is (in the case everything is transversal) the number of pseudoholomorphic 72 with
fixed complex structure.
In the case, 2fic; = 0. Invariant is

[Cty o(M,J,B)]eq.

This is (in the case everything is transversal) the number of pseudoholomorphic 72 with
arbitrary complex struture.

The case fc; =0, g =1, m =0 appeared in Taubes” work on the relation between
Seiberg-Witten and Gromov-Witten invariants. Taubes [69] gave an argument how to
handle this case (when n = 2). There is one difference between the number he defined and
ours. That is we counted only connected curves in a given homology class, while Taubes
counts disconnected one also. [t seems that in case we count only connected one, rational
number (which is not an integer) appeared. Taubes’ counting always gives an integer. It
seems interesting for us to know the reason why after summing up various contributions
from various components {which corresponds to the number of connected components)
finally gives an integer. It seems likely that our invariant (17.16) coincides with Taubes’ if we
take into account the difference we mentioned above appropriately. However we have not
checked it yet.

18. REVIEW OF FLOER HOMOLOGY

In this section, we summarize the theory of Floer homology for periodic hamiltonian
system [19, 35, 52, 62]. The result stated in this section is not new, we refer to [ 19, 35, 45,
52, 62] for their proofs.

Let (M, w) be a 2n-dimensional closed symplectic manifold and H: M x S* — R a smooth
Hamiltonian. We identify S* with R/Z. We write H,(x) =
vector fields Xy, of H, by

dH, = i(Xy) 0.

We call a family of vector field Xy the hamiltonian system.

Definition 18.1. We call a map /:S* — M to be a I-periodic solution of the hamiltonian
system X if 7 satisfies the following equation.

3—f_+ Xy, C@) =0 (I18.1)
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Let ¢,: M — M be the one parameter group of transtormations associated with — X .
We put ¢ = ¢ and call it the time-one map. There is a one to one correspondence between
1-periodic solution of the hamiltonian system and fixed point set of the time-one map.
(Namely we associate 7(0) to /.)

Definition 18.2. A 1-periodic solution is called non-degenerate if 1 is not an eigenvalue
of d¢ on T, M.

Arnold [1, 2] conjectured that the number of 1-periodic solutions of a periodic
hamiltonian system is at least the smallest number of critical points of smooth functions on
M. In case when all 1-periodic solutions of the system are nondegenerate, the conjecture
also states that the number of 1 periodic solutions of the system is at least the smallest
number of critical points of Morse functions on M.

Morse theory tells us that the number of critical points of a Morse function is at least the
sum of Betti numbers and torsion numbers. In this paper, we study the estimate by the Betti
numbers {i.e. the rank of homology group over Q).

From now on, we call 1 periodic solutions as periodic solutions, and denote by 2(H) the
set of all contractible periodic solutions of (18.1). Equation (18.1) can be considered as the
Euler-Lagrange equation of a functional .«/;; on a covering space of the space LM of
contractible loops in M, which we shall explain below. Write

xeL(M),
M) ={(x,u)|u:D* > M} | ~
X = ulop2
X =y
(X, u) ~ (ys U) ~ fpuikw = jlpvf(/)
j.DZ U*Cl == jDz'))*Cl

The covering transformation group of L(M) — L(M) is

_ 7,(M)
ker ¢, nker ¢,

where ¢, :m,(M)—R and ¢,:n,(M)— R are evaluation maps of ¢; and w. The action
functional is defined by

Ay(x,u) = — f uto + le(x(t),t) dt.
D? 0

Floer mitiated an analog of Morse theory for the action functional .o7y.
First of all, we formally compute the equation for gradient flow lines. Let J be an

almost complex structure compatible with «. Then the Riemann metric ¢g; defined by
g;(v,w) = w(v,Jw) induces L? inner product on the tangent space of LM, so does on LM.
A curve y:R — LM is identified with a map h:R x S* - M. Under this identification, the

Oh oh

5.+ 5, + VH() =0, (18.3)
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where VH, is the gradient vector field of H, with respect to g;. Here and hereafter we use
7 for the coordinate of R, and ¢ for the coordinate of S'.

Definition 18.4. A map h:R x S' — M solving (18.3) is called the connecting orbits.

Definition 18.5. The energy Ey(h) of h:Rx S* — M is defined by

1 1 2
s [ b

Let h; be a sequence of connecting orbits with Ey(h;) < C for some constant C. An
argument similar to the proof of Gromov’s compactness for pseudoholomorphic curves
implies that there is a subsequence, also denoted by {&;}, which coverges, outside of a finite
set of points in Rx S, to a connecting orbit h., locally uniformally. The bubbling-off is
analyzed in the same way as the case of pseudoholomorphic curves and we possibly get
bubble tree. (The phenomenon of splitting into several connecting orbits will be discussed
later in this chapter.)

Using the above argument, one can prove the following:

2

oh
ot

2 x
ot H

Tueorem 18.6. The following two conditions on connecting orbit h are equivalent.
(18.6.1) Ey(h) < 0.
(18.6.2) There are (/*,u*)e LM with /* being solutions of (18.1) such that
lim h(z,t) = £*(1)

and (¢ ", u™) ~(/*,u” #h) modker ¢, nkerd,. Here u” #h:D* > M is a map
obtained by gluing u™ :D*> - M and h:Rx S' > M along /™ = ulsp> = h|~ ) st

We denote by #(H) = LM the inverse image of 2(H), the set of all contractible periodic
solutions of (18.1). Z(H) is the set of critical points of the functional .«7;. We have an action
of T on Z#(H) by (A, /) — u#/, where [u] = A and # is as in Theorem 18.6.

Definition 18.7. Let /* = (/*, u*)e Z)(H). We denote by .Z(/~,/*) the set of all
connecting orbits h satisfying

lim h(z,t) = £*(t) (18.7.1)
T+
h#/~ ~7* modker ¢, N ker d,,. (18.7.2)

Since connecting orbits are solutions of {18.3), which 1s an equation of gradient Iine for

</, We have

Eu(h) = syl 7) — sy () (18.8)

if he /7 (i - i *). We remark that the right-hand side depends only on / -, /% and is

We remark also that, since eq. (18.3) 1s invariant by the translation symmetry n
7 variable, it follows that R acts on .Z(/ =,/ ¥). This action is free if / ~ # / *.
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We are going to review the definition of Floer chain complex. For this purpose we
introduce a completion of the group ring of I', with respect to the homomorphism
¢, 12 (M) — R. The ring we obtain by completion is called the Novikov ring, since it is first
introduced by Novikov [51].

Definition 18.9. The Novikov ring A is the set of all formal sums Y 4.r440, with 1,€Z,
which satisfies the following conditions
For any ceR the set

{AeT iy #0, @A) <c}

is finite. The sum in the coefficients of

i =Y ( y zl,Baz,A_B>5A (18.10)
Ael’ \Bel'

is a finite sum and is well defined. One can also check that 4,4, € A. Thus A has a structure

of ring. The Floer chain complex we are going to define is a chain complex with coefficient

in A.

The Floer chain complex is analogous of Morse’s (or Witten’s [ 72]) complex associated
to our functional ./;;. Hence the set of generators of it (as an abelian group) is the set of
critical points of .27, which is identified with Z(H). The definition of degree of each critical
point is different from finite dimensional case. Since both the numbers of positive eigen-
values and negative eigenvalues of the Hessian operator at a critical point of .«7, are infinite,
the definition in the finite dimensional case, which uses Morse index does not make sense in
the case of .«Z;. However one can make sense the difference of Morse index of two critical
points 7, /'€ (H), by taking the index of spectral flow of a certain 1-parameter family of
ordinary differential opeators on S*. In fact, there is a map u: (H) — Z, so-called Conley-
Zehnder index. (See [10, 19, 62].)

Now we are ready to introduce Floer’s chain complex.

Definition 18.11. C, = C,(H,J) is the set of all formal sums

Y D)
feF(A)
w()=k

satisfying the following conditions.
For each ceR, the set

(/e PH)E(L) #0, dy(l) > c}

is finite.
Let A=) ,4404€A and
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is well defined and is an element of C,(H,J). {(We can prove it by using (18.8).) Hence
Ci(H,J) is a module over A.

The rough idea to define a boundary operator d: C, — C;_1 is to count the order of the
quotient space .#(/ ~,/ ) = .7/ ~,/ *)/R and put

&= # ML, L) 57
7

We will discuss it in more detail later.

In the case when (M, w) is semi-positive (or weakly monotone), the strategy explained
above was carried out rigorously in [19, 35]. There it was also shown that d- 0 = 0.

Thus we obtain a chain complex (C,(H,J), d). The homology of this chain complex is
called Floer homology and is denoted by HF,(H, J).

It is proved also in [9,35] that the homology HF,(H,J) is invariant under the
deformation of (H,J). The idea of the proof was as follows. We study the z-dependent
analogue of eq. (18.3). Namely, let (H.,J;) be a smooth 1 parameter family of pairs
H.:M x S - R and almost complex structures J, compatible with . We assume that there
exists R > 0 such that

(Hr’Jr) = (Hqua) for t <—R
(18.12)
(H.,J.) =(Hy,Jp) for 1>+ R

where o, f are independent of . We then define a map
(I)?I!-Ili,lr) . C*(Hza Ja) - C*(Hﬂa Jﬁ)
by counting, with sign, the number of solutions of the equation

oh oh
—+ J(h)— + V(H)h) =0. (18.13)
0t ot

One can then prove that @“H’f .7, 18 a A-module map and is a chain map. It is also proved
that it is independent of the choice of (H.,, J;), up to chain homotopy. So we obtain a map

®*’: HF,(H,,J,) - HF (Hg, Jy). (18.14)

We then have ®*7 = ®#7- ®*#_ One can then prove that (18.14) is an isomorphism

To obtain an estimate of number of periodic orbits we need also to calculate the Floer
homology as follows:

HF,(H,J)= H (M)® A. (18.15)

(18.5) is proved by Floer [19] in the case when M is monotone, and by Hofer-Salamon
[35]: in the case either ¢, = 0 or the minimal Chern number N is at least n = 1/2-dim M.
The second named author [52] proved a similar isomorphism for weakly monotone
symplectic manifolds after modifying the definition of Floer homology group. Later,
Piunikhin et al. [55] and Ruan-Tian [59] announced the isomorphism with multiplicative
structure.

Definition and invariance of Floer homology and its calculation (18.15) imply the
estimate of the number of periodic solutions in terms of the Betti numbers, in the case all
periodic solutions are nondegenerate.
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These are the summary of Floer homology theory for periodic hamiltonian systems on
weakly monotone symplectic manifolds. To apply this strategy to an arbitrary symplectic
manifold, we need to deal with “negative multiple cover problem” for the bubbling-off
of pseudoholomorphic spheres from solutions of eqs (18.3) and (18.13). This is the reason
why Theorem 1.1 was proved only in the weakly monotone case.

We are going to apply our method developed in Chapters 1-3 to prove Theorem 1.1.

19. KURANISHI STRUCTURE ON THE SPACE OF CONNECTING ORBITS

The aim of this section is to define a Kuranishi structure on the space of connecting
orbits, which enables us to define Floer homology (with rational coefficient) for periodic
hamiltonian systems.

We pick and fix p > 2. For 7/ * = (/ *, u*)e Z(H), we first define spaces Z(/ ~,/ *) and
&/ ~,7 7). We take a map ho:Rx S! > M such that

/() if t>R

/() if 1 <—R, (191

hO (Ts [) = {
Let LY (R x S h§ T M) be the Banach space of L%-sections of h§ T M. (Here L-section stands
for the LP-section whose first derivative is of L? class.) We remark that, since p > 2, elements
of LE(R x St; h§ TM) are continuous.

Definition 19.2. ;%‘(/N_, / *) is the set of all locally LY-maps h:RxS! - M with the
following properties. There exists &e L5 (R x S1; h§ TM) such that

h(‘[,', t) = eXpho(r,t) f('[, [)

on S'x((—o0, —RJU[R, ) for some R >R and that (/T,u™#h)~
(/~,u")mod ker ¢, nker ¢,,.

Here exp is the exponential map with respect to the metric g;. Since h is continuous the
last condition makes sense. It is easy to see that Z(/ ~,/ *) is independent of the choice of
ho:RxSt—> M.

It is well known that Z(/ ~, 7 *) is a Banach manifold.

Definition 19.3. &(/ =,/ %) is the Banach bundle over #(/ ~,/ %), whose fibre at
he#(/ ~,¢ ) is LP(R x SL,h*TM).

For he #(/ =,/ "), we put

%+mmm%+wmm» (19.4)

Opuh =3 ot

It is easy to see that J;, yhe LP(R x S1; h*TM). The following lemma is also easy to see

LemMA 19.4. h— 8, yh is a Fredholm section of the Banach bundle (7=, 77).

Hence its differential defines a Fredholm operator:

D0y y: LR x ST:h*TM) — LP(Rx S1: h*TM). (19.5)
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(We remark that it is more natural to regard the target as LP(R x S: A® (R x S1) ® h*TM).
But we can identify it with LP(RxS':h*TM) by using a canonical trivialization of
A®1(R x S1))

We have

LemMA 19.6. There is a map u:P(H) — Z such that D0y 4 is a Fredholm operator of
index u(7~)y — w7 "), if he B, 7).

We omit the proof see [35].
We remark that R acts on &(7~,7") and #(/~,7") by translation of t-variables and
that h+ 0, yh is an R-equivariant section.

Definition 19.7. .77, 77) = {he B,/ )0, yh =0 A, 77)= 40, 7")R

Based on McDuff’s result, it is proved by Hofer and Salamon in [35] that ./Z (7, /") is
a smooth manifold of dimension u(7~) — (/™) for a generic choice of (J,, H,). (However we
donot use it in this paper.) If /~ = 77 = 7 then.Z (7,7 )is a single element. (This is because
the equation d; zh = 0 which is equivalent to (18.3) is a gradient flow equation of .«7.)
Otherwise the R action on .#Z(7~,7) is free. Hence .#(/~, /") is a smooth manifold for
generic (J;, H;) also.

However, the space .# (Z =,77%) is, in general, not compact, and we are forced to
investigate its compactification.

If we assume that M is weakly monotone (semi-positive) and (J,, H,) is generic, then the
space .#(/~, /") is compact if u(/~) — u(/*) = 1 and is compact upto splitting into two
connecting orbits if (7 ~) — u(/ ) = 2. (This is because, under the assumption on the weak
monotonicity, possibility of bubbling off of pseudoholomorphic sphere is excluded by
choosing (J,, H;) generically.) (We do not use this fact in this paper.)

These facts enable Hofer and Salamon [35] to define Floer homology for periodic
hamiltonian system on weakly monotone symplectic manifolds.

We use a generalization of the notion of stable maps and also we use machinery
developed in Chapters 1-3 to define Floer homology for periodic hamiltonian system on
general symplectic manifolds.

The following lemma, Theorem 3.3 in [35] (see also Lemma 3.5 of LE-Ono [43]) as well
as Lemma 8.1 is essential to prove the compactness of C.#(/~,7") and to construct a
Kuranishi structure on it.

LemMa 19.8. There is &' > 0 such that if /= # 7" and if he (7, 77) then Ey(h) > §'.

We will give a proof of it in Section 20 for reader’s convenience.
Now we generalize the notion of stable maps as follows. For a natural number m we

m=1{1,2...,m}

Definition 19.9. A stable connecting orbit is a triple ((hy, ... , Iy), (64, ... , 61), 0) such that

(1991 hje,%(fj, fjﬂ), where Zje@(H), j=1 ..., k+ 1
(1992) O'iECe%O’I(M, J, ﬁl)
(19.9.3) o is an injective map from I to the k copies of R x S*.
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(199.4) Leto; =(Z,, h, ), where X, is a genus zero simistable curve with one marked point
and h,:X, - M. Let z;e X, be the marked point. Let o(i) = (t;, t;) is on the jth
copy of Rx S!. We assume that h, (z;) = hi(t;, t;).

(19.9.5) If ZJ = Zj+ 1, then there exists i such that o(i) is on the jth copy of R x S1.

Let p:1 — I be a bijection. We then say that ((hy, ... , i), (04, ... , a;), 0) is isomorphic to
((he, oo i), (0,000, oo Opm)s0° p~1). For simplicity we write ((hy, ..., i), (61, ... , G7), 0)
for isomorphism class also.

We consider k copies of Rx S* plus X, , i = 1, ... , I, attached at o(i) = (t;, t;) to the jth
copy of R x S1. Let us call this space the domain of definition of our stable connecting orbit
and write it as X. We say that a point on X is singular if it corresponds to a singular point of
%, or is on the image of 0. We can define a map h from X to M. Namely we let h = h; on the
ith Rx S*, and h=h, on %,

In place of writing ((h4, ... , ), (04, ... , 61), 0), we write (£, h) sometimes for simplicity.

Let ((hy, ..., h), (o4, ..., 6;), 0) be a stable connecting orbit and (rq, ... , r,) eR*. We
define (rq, ..., r)(hy, -, ), (01, --. , 61), 0) as follows. We take jth copy R x S, and take
its translation of R factor by r;. We also let h;e 7/ (7~,7:+,) translate accordingly. Also we
translate o( j) by r; if it is on jth component.

We say that (ry, ..., )({(hy, ... s ), (04, ..., 01),0) ~((hy, ... . ), (04, ..., 01),0).
We write [(hy, ..., W), (04, ... ,0;7),0] or [X,h] the equivalence class containing
((hes - s ), (01, ... , 07), 0).

Definition 19.10. We say that [(hy, ..., h), (01, ..., 07), 01€ CU( ™, 77) if
(19.10.1) 71 =7".
(19.102) By + - +P)#l1=7".

If we define an energy of [(hy, ..., hy), (64, ..., 6;),0]1€ C.4(7~,77) by
Eu([(hy, ..., ). (01, .., 01), 0]) = ), En(hi) + 3 E(oy),
where E(o;) = jz'_ hiw, then it is easy to see that
Ey([(hyy . . hy), (64, o, 0p),0)) = Ay(l7) — A w77 (19.11)
which depends only on 7=, 7" and is independent of the choice of elements [(hy, ... , k),

(G1, ... .0p), 01€CHMT, 7).

We can define a topology on C.#(/~,77) in a way similar to that in Section 10.

Tueorem 19.12. C.4(/~,77) is Hausdorff and compact.

Proof. Using Lemmata 19.8 and 8.1, we can prove that there are only finite many
possibilities of the number k and I as well as f; in Definition 19.10 for an element
he C.4(7~,7"). In other words, there are only finitely many possibilities of the combina-
torial types of “bubble tree” for stable connecting orbits in C.Z (7=, 7™).

Theorem 19.12 then can be proved in the same way as Theorem 11.1, by using Gromov

We next need a notion of Kuranishi structure with corners. It is defined by replacing
[0, 00) x R*~1 in Definition 17.1 by [0, 0 }* x R* 2 for some B.
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Let X be a space with Kuranishi structure with corners. We denote by Sz X the set of all
points x € X such that its Kuranishi neighborhood is [0, 0 )’ x R~ #/T" where x corresponds
to the origin. SzpX has a “Kuranishi structure” except it is not compact. We put

S(B)Xz U SB/X.

B 2B

We remark that, for a space X with n dimensional Kuranishi structure with corners, the
set SpX may be nonempty for B with B > n. This is similar to the fact that the space with
Kuranishi structure of negative virtual dimension can be nonempty. This is the reason we
need to introduce Kuranishi structure with corners. (We use only moduli spaces of
connecting orbit of virtual dimension O or 1 to define and study Floer homology. So in the
case when the sympletic manifold is weakly monotone, we only need to study the moduli
space which is a closed manifold or a manifold with boundary.)

However when we consider only homology classes, we can prove that the contribution
form strata of negative virtual dimension vanishes. (This statement must be made precise.
We will do it later in Section 20.)

We can define the notions of orientation and stably almost complex structure of the
Kuranishi structure with corners in a way similar to Section 6.

If X,, X, are spaces with Kuranishi structure of dimensions ny, n,, respectively, with
corners, it induces a Kuranishi structure of dimension n,y + n, with corners on the product
X; x X,. Namely if (U, E,, s,) and ( ,, F,, t,) are the charts of X; and X, respectively, then
(Uyx 4 E,@F, s,®t,) is a chart of X; x X,.

If X, X, are oriented (stably complex) so is X{ x X,. We define the following map

B—-1
Gluez:  Cll (Zy, lysr) = CAl (74, Tp). (19.13)

b=1

For (hy, ... \hg_1)e 21 (7, 7;+,), we define
Glue(f’l, . 1) (hls (R hB) = ((hls see sy hB)! (b’ (D)

Here the right-hand side is the case k = B, I = 0 in Definition 19.9. It is easy to see that one
can extend it to the compactification.
We can now state the following theorem.

Turorem 19.14. C.4#(7~,77) has a u(7 ™) — w(Z ™) — 1-dimensional oriented Kuranishi
structure with corners. For B = 3, we have

Ce%(’f—, g+)(3_2) - U Im Glue(z—, ’ZB71:/7+) .
Where the union in the right-hand side is taken over all 7; such that sty(7 ™) > Ay(/5) > -+
> ly(lpg_1) > Ayl

For the proof we first need:

LeMMA 19.15. For each C < C, there exists only a finitely many 7=, 7+ € Z(H) such that
Cy>Ay(l™)> Ay(l7) > Cy and that CM (7™, 77) is nonempty, if we identify the pairs
(/=,7%) by the equivalence relation (/~,77)~(B#7~,p# /*)modker ¢, Nker ¢,
(BemyM /ker @, Nker ¢,.)
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The proot of Lemma 19.15 (using Lemma 19.8) 1s similar to the prootf ot Lemma 8.9
which is given at the end of Section 11.

In fact, we need to prove somewhat more than stated in Theorem 19.14. Namely, we
need to make the Kuranishi structures for various C.#(7~,7") compatible.

Let us make it more precise what we mean by Kuranishi structures are compatible to the
embeddings. To clarify the situation, let us first recall the case when C.#(7,, 7, 1) is smooth
(transversal) for each b = 1, ... , B. Namely, we assume that they have Kuranishi structures
such that all the obstruction bundles E, are trivial. Then the neighborhood of the image of
Gluey is also smooth and is diffeomorphic to 221 . #(7,, 7+ 1) x [0, &)*~2 (Floer [19,
Proposition 2d.117).

In the general case when C.#(7;, 7;. ) may not be smooth, we prove the following:

Appenpum  19.16. A neighborhood of Im Glue; together with oriented Kuranishi
structure is diffeomorphic to + B! CAM(Ty™, lyi1)%[0,6)P72 Here + depends only
on :u(fb) - l’l(fb-%-l)a b= 1: teey B—1

Proof of Theorem 19.14. The argument goes by the induction on .«/y(7~) — .Zy(/ ™).
More precisely, let 6” be the minimum of the number ¢ in Lemma 8.1 and ¢’ in Lemma 19.8.

If y(/)— y(77) <", then either C.#(/~,77), is empty or /- =77 and
C.M (7,77 is one point. Hence Theorem 19.14, Addendum 19.16 hold.

Assume that we have proved Theorem 19.14, Addendum 19.16 for Zu(7~) —
Ay(7T) < K§". We prove it for . oZy(7 ™) — Ay(/ ") < (K + 1)§”. To construct Kuranishi
neighborhood around each point (Z, i), we go in a similar way as in Chapter 3. We consider
elliptic operator (19.5) or its generalization similar to (12.1) in the case when X is singular.
We write it

D0, i LE(E h*TM) - L¥(S: h* T M). (19.17)

Ifit is surjective, we can perform the Taubes’ type gluing construction in the same way as
Floer [19], to find a neighborhood of (£, 1) which is smooth orbifold as follows.

In order to glue the bubbles, we use the following trick by Gromov [33]. Note that
eq. (18.3) is an inhomogeneous Cauchy-Riemann equation. A solution of an inhomogen-
ous Cauchy-Riemann equation can be considered as a solution of (homogeneous)
Cauchy-Riemann equation to the product of the domain and the target with an appropri-
ate almost complex structure. Namely we find an almost complex structure J(J, H) on
(Rx S')x M such that a map h:R xS — M satisfies Eq. (18.3) if and only if its graph:
RxS! - (RxS!) x M is pseudoholomorphic with respect to the almost complex structure
J(J, H) on (Rx S')x M.

We use the following three facts on this almost complex structure J(J, H): The pro-
jection from (RxS')xM to the RxS! is pseudoholomorphic, all the fibres of
(Rx S')x M - R x S! are almost complex; the almost complex structures on fibers are the
same as the almost complex structure on M, the target.

Therefore, a pseudoholomorphic sphere S on M produces a holomorphic sphere
(T, to) x Sin Rx S x M with (z4, ty)eR x S1. It is also easy to see that every holomorphic
sphere contained in one fiber is obtained in this way.

Therefore, the gluing with connecting orbit and pseudoholomorphic spheres is reduced
to the gluing between a pseudoholomorphic map Rx S!' - (Rx S')x M and pseudo-
holomorphic spheres. We discussed the later problem in detail already in Chapter 3.
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The other type of gluing we need to handle, 1s the gluing several connecting orbits along
the periodic solution, i.e. the gluing related to the map Glue. However, in this case, the
argument is the same as Floer’s [19]. The only points we need to change the argument
of [19] is that, there may be a cokernel to the operator (19.17). But we can handle this pro-
blem in the same way as Chapter 3, i.e. replacing (19.17) by (19.18) and changing (19.4)
accordingly.

If (19.17) is not surjective, we need to take a subspace Ey ; satisfying a condition
corresponding to (12.7). Especially the map

LP(X:h*TM)
E():‘ )
is assumed to be surjective. In the case when our X is in an image of some Glue; by induction
hypothesis, we may assume that E. » is chosen. Hence we take that one. We next prove that
it is well-defined. Namely, if (£, /) is in an image of two different Glue; (namely Glue defined
in different strata), then E= » is independent of the choice of Glue. In fact, if
(Z, h) = Glue, x = Gluey y

for some x, y, «, f then there exits some z and 7, é such that

Dyl u): LA (X h* T M) (19.18)

Es,

x = Glue, z, y= Glue;z.

It then follows from induction hypothesis that Ew.» induced from x is equal to E.» induced
from y.

We next stratify the complement of the image of Glue in C.#4(7~,7") in a way similar
to Section 8.

We can then extend Ee.» to all (£, h)e C.4(/~,77) such that it satisfies a condition
corresponding to (12.7) and that they are compatible to those we have already chosen. We
thus have made a choice of Ex. 5.

Thus we can repeat the argument of Chapter 3 to construct a Kuranishi structure. We
thus have constructed a Kuranishi neighborhood around each point of C.#(7~,7 ™).

The argument to glue them is the same as the one in Chapter 3, since we have already
made a choice of E= » (Which we use in the same way as we use E, in Section 5.) We will
discuss the orientation in Section 21.

To complete the proof, let us verify that the virtual dimension of the Kuranishi
neighborhood is constant and is equal to u(/~) — u(7%) — 1.

To see this, we need to calculate the index of (19.7). Let ((hy, ... , hi), (64, ... , 05), 0) Or
(Z, h) be a stable connecting orbit determining an element of C.#,,(/~, 7). We recall

j=1 ..., ki=1..1
u;e LY R x S'; hiTM)
ue LY(Z, ; hi TM) where o; =(Z,, h,)
If ofi) = (t;, t;) is in the jith
copy Rx ', then u;(t;, t;) = ui(z;)
where z; is the marked point of X,

LY(Z:h*TM) = ((u)), (u;))

If we forget the compatibility condition u;(t;, t;) = ui(z;), etc., then the operator is the
direct sum of Dy, 0y, and DhJ_ 526_ for various irreducible components. Hence its index is
a sum of the indices of D, ;. » and Dy, 520 over various irreducible components. Namely,
we have -

13 7

Y (ulZe1) —u(Z) =) +2 Y firey + 20N, (19.19)
=1 =

i=1
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where N is the total number of irreducible components of X,. The condition
u; (t;, t;) = ui(z;) and the similar compatibility conditions on the singular points of X, im-
pose 2n(I + ) s;) conditions where s; is the number of singular points on X, . Therefore the
index of the operator (19.17) is

Wl y) — wlsq) — k42 i Bici —2n(I + 3 s;) + 2nN. (19.20)
i=1

To calculate the virtual dimension of the Kuranishi neighborhood around this point, we
need to add to (19.20) the number of parameters corresponding to the deformation of
complex structures (keeping the combinatorial types) and the parameter of gluing, and also
we need to substract the sum of dimensions of the automorphism groups of various o;. We
remark that s; + 1 is equal to the number of irreducible component of X,. Hence
Ysi=N-—1

Let %, = UEJM be the decomposition to the irreducible components. Let ¢;, be the
number of singular points on X, . Here singular point means the point where X,  inter-
sects with other X, .

The number of parameters (over reals) to deform the complex structures of X, without
changing the combinatorial type is 2) max {0, ¢; , — 3}. We have 2 more parameters
corresponding to the deformation of the position of marked point of Z, (i.e. the point where
X, is attached to one of the R x S'ss).

The dimension of automorphism group of X, is 2y max{0,3 —¢; ,}.

Since the genus of X, is zero, we have a tree with s; + 1 vertices such that vertices have
t;,, edges, in a way similar to that in Section 9. Hence by Euler’s formula we have

1
s;+1— 5 Z L, = 1. (1921)

We find that the number of parameters for gluing is equal to the sum of k — 1 and twice
of the number of singular points. Hence it is 21 4 2)_ s; + (k — 1). The number of para-
meters of the deformation of the singular points which are on the copies of Rx S is 21I.
Summing up, the virtual dimension of our Kuranishi neighborhood is

1
wlly) —ullis1) —k+2 ) piey —2n(I +)5;) + 2nN
i=1

+ 2> max{0,t;, — 3} + 21

—2) max{0,3 —1;,}

+20+2) s;+(k—1)+ 2L

Using (19.21) and the fact that the number of irreducible components of X, is s; 4 1, we find
that this number is equal to

w(Z1) — pll+1) +2 Z Bici —

i=1

w(l 1) — p(l+1) +2 .;1 Bici =/ ") — (/™).
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Thus the virtual dimension is u(/~) — u(/ ") — 1 as required. The proof of Theorem 19.14
and Addendum 19.16 are complete modulo the construction of the orientation and the
proof of Lemma 19.8.

20. DEFINITION OF FLOER HOMOLOGY

In this section, we will construct Floer homology with coefficient in Q (or A ® Q) by
using Theorem 19.14 and Addendum 19.16.

The definition of the Floer’s chain complex as an abelian group is the same as the case of
weakly monotone symplectic manifolds which we discussed in Section 18 (Definition 18.11).

We are going to define the boundary operator 0,: Cy(H, J) — C,_(H, J).

First let us mention the outline of the construction. The detail will follow. We fix
Kuranishi structures with corners as in Theorem 19.14 and Addendum 19.16. (We remark
that the boundary operator itself may depend on the choice of Kuranishi structure but its
chain homotopy class does not depend on it.) Then for each 7, 7% with (/™) — (7 7) = 1,
we have a Kuranishi structure with corners on C.#(/~, /") of dimension 0. However we
cannot yet apply Theorem 6.12 directly to define its fundamental class. The reason is that
C.#(/~,77) has a boundary. Hence, though the virtual dimension of the boundary is — 1
and hence we can take a multisection such that it vanishes only in the interior of
C.(/~,77), the Q-cycle defined as the zero point set of this multisection does depend on
the choice of the multisection. So we construct the system of multisections by the same
induction as the proof of Theorem 19.14. We then obtain a chain complex. The resulting
boundary operators do depend on the choice of system of multisections. However the chain
homotopy equivalence class of it is independent of it. This is a method first appeared in first
named author’s paper, [24] Section 12, in the context of Gauge theory Floer homology.

Now let us carry out the plan described above.

We first give some remarks, which can be proved easily. First we remark that Theorem
6.4 and its relative version Lemma 17.8 is generalized to Kuranishi structure with corners.
Next we remark that given good coordinate system on X; then we have an induced good
coordinate systemon  X;. Third given a system of multisections as in Theorem 6.4 on each
X;,wegetoneon X, Let us make the third statement clearer. For simplicity we consider
only the product of two spaces. Let (U,, E,, s,) be a good coordinate system of X and
( 4 F,.t;) be a good coordinate system of Y. Let s, , and ¢, , be sequences of systems of
multisections satisfying the conclusions of Theorem 6.4. We remark that the good coordi-
nate system of X xY is (U,x ., E,® E,s,® t,). s,, and f,, induces multisections
Sp.n @ 0and 0 @ ¢, , of E, @ E,, respectively. We take its sum s, , @ 0 4+ 0 @ ¢, , (Defini-
tion 3.4) and write it s, , @ f,,. It is straightforward to see that s, , @ 1, , satisfies the

conclusion of Theorem 6.4.

Now we start the construction of the good coordinate system and multisections.
The construction works on induction on .«Z;(7 ™) — .Z4(/ ). We first use Addendum 19.16,
to find a good coordinate system on each C.#(/~,7™) such that it is compatible with the
maps Glue. Namely we assume that given a good coordinate system of the domain of Glue,
which is a product of the good coordinate system we have by induction hypothesis, then we
extend it to its neighborhood by using Addendum 19.16. We then extend it to C.Z(7~,7™)
in any way. We thus constructed a good coordinate system for each of C.Z(7~,7") by
induction.

We next construct the system of multisections on each chart of this good coordinate
system, so that it is compatible to the maps Glue.
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The construction is again by an induction on .7y (/~) — ./y(7/ ). Let us describe one
step of the induction. So we assume that multisections are constructed on C.# (M, J, )
with fo < C,and on C.4 (7,7 ) with #y(/ ™) — o/ x(7 ") < C, then we construct multisec-
tion on C.#(/~,77) such that .« (7 ") — .o/y(/ ") < C + &". On images of various Glue in
C(7~,77), we have already multisections (such as s, , ® t, ,). They coincide with each other
on the overlapping part by induction hypothesis. (They proof of this fact is the same as the
corresponding part in the proof of the Theorem 19.14.) Thus, using Addendum 19.16, we
can extend it to a neighborhood of it so that it is transversal to 0. We then can extend it to
all of C.#/(7~,7™) without changing it on images of Glue by using Lemma 17.8.

We thus constructed a good coordinate system and multisections on it, which are
compatible with Glue. We remark that for feI there is a canonical homeomorphism
CH(L, I )= CHMPB#I, p#7T). It is easy to see from construction that we can make
our Kuranishi structure, good coordinate system and multisections compatible with this
homeomorphism.

We now use our multisections to define the boundary operator.

Let us suppose that u(7~)— u(/*)=1. Then C.#(/~,77) has a 0 dimensional
Kuranishi structure with corners. We have multisections s, on it. We consider a stratum of
C.#/(7~,7™) which corresponds to an image of Glue. This stratum is a product of moduli
spaces .#(/"~, 7). The virtual dimension of the stratum is negative. Therefore, there exists
a factor C.(7"~,7'") which admits a Kuranishi structure of negative dimension. So by
transversality, our multisection never vanish on that factor. It follows from the compatibil-
ity and definition of s, ,, the multisection s, , does not vanish on a neighborhood of those
strata. We can also prove by transversality that the set of zeros (s, ,)” (0) is not on
CHM(L, 07— (T, 77)

Therefore the set of zeros (s, )~ '(0) is a 0-dimensional compact space, i.e. finitely
many points, and is contained in .# (7, /). We can define its multiplicity in the same way
as Definition 4.5. We thus obtain a rational number and write it as [(C.Z(/~,77), sp..)]-
Hereafter we write [C.#(/~,7")] in place of [(C.4(/~,7™), Sp.»)] When no confusion can
occur. We now define

0xb7- = Y [CAH(,77)] 67 . (20.1)

7 uly =u7) -1

(Right-hand side in general is an infinite sum.) Using Lemma 19.15, we can prove that (20.1)
determines a map 0,: C(H,J)— C,_(H, J) in a way similar to [35].

LemMA 20.2. 0, ° 0,—1 = 0.

Proof. The proof is similar to the original argument by Floer. We take 7=, 7" with
w(77) — u(Z7) = 2. It suffices to show that

Y [CAH(,C)CAH{Z,TT)] =0. (20.3)

FruFy =uf -1

{(We remark that the sum in (20.3) is a finite sum because of Lemma 19.15.) To show (20.3)
we use our multisection s, , on C.# (7=,7"), which has an oriented Kuranishi structure
with corners and of dimension 1.

We consider the stratification of C.# (7=, 7"). We consider a stratum corresponding to
an element of C.Z(/~,7%) — .#(7/~,7"). We find easily that the virtual dimension of the
domain of these strata are negative except the image of the stratum which is dense in

CAH(,7)x CH(Z,77) such that (/) = (/™) — 1.
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We remark that both of the factors of C.#(/~,7)x C.4(/,7™) have 0 dimensional
Kuranishi structure with corners. Hence the zero point sets of our multisections are finite
there. Because of the compatibility of multisections and the definition of [C.# (7™, 7")], we
find that the order of the zero point set of the multisections s,, on C.# (7, 7)x
C./(7,7™) counted with multiplicity is equal to [C.#(7~,7)]- [C.# (7, 77)].

On the other hand, the zero point set of 5, , on C.# (/~,77) defines a Q-chain in a way
similar to Definition 4.6. Let s, 1(0) be this chain. Then in the same way as the proof of
Lemma 17.9, we can prove that the boundary of the chain s, »(0) is left-and side of (20.3).
(Here we identify 0 dimensional cycle with rational number.) Lemma 20.2 follows. O

We thus have constructed a chain complex (C.(H, J), d). However this chain complex
depends on various choices. That is the complex structure J, the hamiltonian H, the
Kuranishi structure on C.# (Z =, /™), the multisections on it.

We define Floer homology group:

Definition 20.4. HF (M, w), J, E) = H(C«(H, J), 0).
Here we write E to show the choices we made.

THeorEM 20.5. HF (M, w), J, E) is independent of the choices of J, H, E and depends
only on (M, w) up to canonical isomorphism induced from chain homotopy equivalence, which is
also canonical up to chain homotopy.

The proof is similar to one by Floer which is discussed in Section 18, by modifying it in
the same way as last and this sections. So we discuss it only briefly.

Let (H,, Jp), E,, (Hy, J;), E; be two choices of J, H, E. We join (H,, J;) and (H, J;) by
homotopy (H,,J) satisfying (18.12). We obtain a differential equation (18.13). Let
7~ ePH,), I~ Eﬁ(H/{). Let .# (para; 7=, 7™) be the set of all solutions of (18.13) such that
lim, , | ., h(z,t) = £ *(t). We remark that we do not divide it by R-action since eq. (18.13) is
not translation invariant.

We define its compactification C.#,,(para; /~,7 ") in the same way in Definition 19.9.
More precisely its element is ((hy, ..., h), (01, ..., 05), 0) Where hye (0, 7;,7;11) i < iy,
hye M (p; 7 lis1)i>ioand h;, € 4 (para; Zio, Zioﬂ). Here .7 (x; /i 71+ 1) is the moduli space
M+, 7+ 1) defined by using (H,, J,,). The other conditions for ((hy, ..., h), (61, ... , 0;), 0)is
similar to Definitions 19.9 and 19.10. We remark that we divide only .#(x; 7;, 7i11),
MB; 7y livy), i # ig by translation symmetry.

We can define a topology on C.#(para;/~,7™) and can prove that it is Hausdorff and
compact in the same way as Theorem 19.12. We can then prove that C.#(para; 7 ~,7) has
a Kuranishi structure with corners and of dimension u(7~) — u(7 ) in the same way as the
proof of Theorem 19.14.

There are maps Glue similar to one in Section 19. Namely Glue is a map such as

C Al 71, 73) x Cl (para; £, 3) x CAHM(B; 73,7 4) = CAl (para; 71,7 4).

We can then construct the Kuramshi structure compatible to all of Glue and the ones we

have constructed on C.#(a; 71, 7,), C.#4(B;71,7,), (i.e. a part of data in E, and Ej). We next
use the good coordinate systems and multisections on C.#(«; 71,73), CHM (p: 71,7,) and
the one on C.#{para; 7=,7%). We find good coordinate systems and multisections on
C.# (para; 7=, /") which are compatible with Glue.
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We define @ (s, : Ci(H,, J,) = Ci(Hy, Jp) by

Oy 5y 07-)= ), [Cpara 7=, 707
w7y =ul™)
7+ e H(Hy) '

Here [C.# (para; 7™, 7*)] € Qis defined in a similar way to [C.#(7~, /*)]. We can then use
a similar argument to Lemma 20.2 to show that @y _ 5, is a chain map.

Next we show that this chain map is, up to chain homotopy, independent of the choice
of (H,, J.), Kuranishi structures, good coordinate system, and multisections we used to
define it. We write E, for the choice of Kuranishi structures, good coordinate system, and
multisections, and write Oy, ;. =, to show it explicitly.

We choose a homotopy (H. ., J.,), u€[0, 1] such that (H,,, J.,) = (H,, J;) and that
(H.,,J.,)=(H,, J,). Also (H,, J. ,) satisfies condition (18.12) for each ue[0, 1]. Then we
consider the union

C.il(parapara; 7=, /%)= ) {u}xC.dl(para, J,;7~,77).
wel0,1]

Here we write C.#(para, J.,;7~, 7 *)to show that we use (H,_,, J. ) to define it. We then
can repeat the same argument and show that C.#(parapara; 7~,77") has an oriented
Kuranishi structure of dimension u(7) — u(Z*) + 1 such that it is compatible with various
Glue. Also we may assume that its Kuranishi structure coincides to the one given by E; and
= at u =0, 1, respectively. Now we consider the case u(/~) — u(/ ") = — 1. We put

H(6)= Y, [C.# (parapara; 7, 77)]67+ .
w7y =u*)—1
7t e P(Hp)

Here we use multisection on C.#,,(parapara; 7,7 ") extending one given by Z, and E, . In
a way similar to the proof of Lemma 20.2, we obtain

®(H7jv I =) — (I)(H;-Jés:i) == Jfa + &#

Thus @y 5,): Cy(H,, J,) > Co(Hp, Jy) 1s independent of various choices up to chain
homotopy. Let

o~F:HF,(H,, J,) - HF(Hy, Jy)
be the map induced on homology groups. Next we claim

P70 O-F — P, (20.6)

The proof is the same as Floer’s and is omitted. On the other hand, we can prove that

> = id. (20.7)

To show (20.7) we remark that we can use trivial homotopy (H,, J.) =(H,, J,) to
calculate ®** Then we find that there exists an R action on C.#(para; 7=,7"), the
translation along t coordinate. This action is free if 7/~ # 7. In fact

M AN —
¢ (par‘;’ ) T




1028 K. Fukaya and K. Ono

We remark also that our Kuranishi structure, good coordinate system, and multisections
are the same for 1 = — o0, + co. Hence we may assume that the Kuranishi structure, good
coordinate system, and multisection are products of the ones for C.#(x; 7/~,7") and R.
Hence if 7/~ # /" and u(/~) = u(/™) then the multisection does not vanish on C.# (para;
7/=,77). On the other hand, if /7~ =77, there is one element in C.#(para; /~,77),
h(zr,t)=7"(t) = 77(t). Using the fact that all the periodic orbits are nondegenerate
h(t, t) = 77 (t) is isolated in C.#(para; /*,7™) and is transversal. On the complement of
h(t,t) = /"(t) in C.#(para; 7*,7"), we have again an R-action, hence we can show that
there is no zero of multisection there. Thus we have ®** = id. The proof of Theorem 20.5 is
now complete. O

We close this section by proving Lemma 19.8. The proof is by contradiction. We assume
that there exists a sequence h;: R x ST — M such that

(20.8.1) h; is a solution of (1.94),
(20.8.2) 1lm Ey(h) =0,

(20.8.3) lE:(hi) # 0 for every i,
(20.8.4) HlirirnOO % = 0 for each i,

and will deduce a contradiction.

Oh;
ot

oh;
SuBLEMMA 20.9. lim sup<‘—1 + > < C, where C is independent of i.

i~ 0t

Proof. If not there exists a subsequence, and (t;, ;)€ R x S* such that

h.
hm( Oh;

inoo\ |07

N oh;
ot

>(Ti, t;) = o0.

By (20.8.4), we may assume that |0h;/0t| is maximal at (t; ¢;). By scaling we have a
pseudoholomorphic map h:C — M such that

J h*w < Iim sup Ey(h;).

i>w

By Lemma 8.1 and removable singularity, the left-hand side is not smaller than 6. This

i=w

h.
SuBLEMMA 20.10. lim sup}%

Proof. If not, there exists a subsequence, and (t;f;)eRxS! such that
|0hi/ 07| (1, t;) > 09 > 0. By (20.8.4), we may assume that |0h;/0t| is maximal at (z;, t;). By
translating the solution in 7 direction, we may assume t; = 0. By Sublemma 20.8 and elliptic
regularity, we have a subsequence which converges in C*-topology on any compact set.
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Hence we have a limit of im;- ., h; = h such that Ey(h) < lIiminf,_ , Ey(h;) = 0. On the
other hand, we have |0h/dt|(0, t) > 5, > 0. Since C*-norm of h; is bounded by Sublemma
20.9 and elliptic regularity. (Here we put ¢t = lim;_, ., t;.) Since 5 is a zero of (19.4), it follows
from |0h/07|(0, t) > 0 that Ey(h) > 0, a contradiction. O

SuBLEMMA 20.11. For sufficiently large i, there exists /;€ P(H) such that

lim sup dist{hi(z, 1), /;(t)) = 0.

i2ow Tt

Proof. Let ¢: M — M be the time one map. By Sublemma 20.10 we find that

lim sup dist(¢hi(z, 0), hi(z, 0)) = 0,

1= w0

Using the fact that there are only a finite number of fixed points of ¢, Sublemma 20.11
follows easily. O

Since #(H) is a finite set, we may assume that /; = 7 is independent of i. The rest of the
proof is similar to (and easier than) the proof of Lemma 11.2 in Section 14.
We put
hi(z, t) = expy ailt, 1).

In a way similar to Sublemma 14.3, we can prove that

da; Da;
(1) = — J((0) = — V2, Hia;) + 0(a;) (20.12)

dt dt
10, (a)”Lf,,,(Ir)xsl) < ”a”IZE ((r — 1/2,7 + 1/2) x SY). (20.13)

We remark that the nondegeneracy of 7 implies that the operator
Da:
0 —J() d—i’ — V2, Ha) (20.14)

is invertible. By (20.8.4), there is a point 7; where ||a;(7)|| .2s1) 1s maximal. By Sublemma 20.10
we may assume that lim;_, ,, [|a;(t;)|| 2s:) = 0. Using it and elliptic regularity we find that

102(ai()> < &illa(D)ll: and  lim g = 0. (20.15)

1w

On the other hand, by (20.11) and

d S
G la@lte =T

Day(t;)

‘< — J{Z(1)) - sz'(r) H(ai(t)), ai(ri)>‘ < {03(a; (1), air;)). (20.16)

dt

(20.15) and (20.16) contradicts the invertibility of (20.14).
The proof of Lemma 19.8 is now complete.
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21. COHERENT ORIENTATION

In this section, we are going to define an orientation of our Kuranishi structure
constructed in Section 19. The existence of tangent bundle can be proved in the same way as
in the proof of Proposition 16.1. In view of the argument of Section 16, we are only to show
the following Lemma 21.4 to construct an orientation.

Let #(/~, 77) be as in the beginning of Section 19. But in this section we consider its
subset consisting of smooth maps (for simplicity), and denote it by the same symbol. For
each element h e (7, /) we have an elliptic complex (19.5). It gives a family of elliptic
operators parametrized by #(7/~, /7). We denote it by D,d; . Hence its index gives an
element

Index(Dy0y 4,7, 7 ) e KO(B(~, ™). (21.1)

The orientation corresponds to a lift of (21.1) to KSO(#(/ ~, 7). We need to make sure
that the lift satisfies various compatibility conditions for gluing and bubble. To describe it
we need some notations.

We take an arbitrary compact subset of #' (7, 7;+1) S %(/;, 7;.1). We then have
a gluing map

Pat: A (1, [2)x H (03, I3) = B4, 73). (21.2)

We define it by shifting elements of #°(7;, 7; . ;) so that their supports are almost disjoint
and gluing them by using a partition of unity. We do not specify the map since we only need
its homotopy class.

We next consider the compatibility with bubble. For f eI, let #(f) be the set of all
smooth maps from S? to M representing . We define ev: % (B) — M by ev(h) = h(p,). Here
we fix po e §2. Let #'(B) <= B(p) and A (7=, 7") < B(/~, /™) be compact subsets. Choose
sufficiently small ¢ and put

HB) AT, 7%) = (I (x, )| dist(ev(h), Wz, 1)) < ).
By choosing ¢ enough small we find a map
Pat: A (B)x, AL, 77y > BB#I, 7T,

whose homotopy class is well defined. For each h € Z(f), we consider the linearization of
pseudoholomorphic curve equation:

D, 0: LE(S%, h*TM) — L¥(S%, A%1(S?*) ® h*TM). (21.3)
(21.3) is a family of elliptic operators. Hence we have its index
Index(D,0; p) e KO(%(p)).

The symbol of (21.3) is complex linear and S? is closed. Hence we find an element
Index(D;0) € K(#%(p)) which is a lift of Index(D,?). It induces Ori(B) € KSO(%(p)).

Lemma 21.4. There exists an element Ori(Z~, /) e KSO(B(Z~, 7 7)) with the following

properties.

(21.4.1) Ori(/~, ") goes to Index(Dydy 4.7, ™) by the natural projection KSO(B(/~,
7)) - KO(B(Z~, 7))
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(21.42) Let #(/;, 7i11) S B(/i, /;+1) be compact subsets and incl denotes the inclusion
map. We have

Pat*(Ori(7;, 73)) = incl*0Ori(74, 75) @ incl*Ori(7,, 7).

(21.43) Let 4 (7~,77) < B(~,77), #(B) < B(B) be compact subsets and incl be inclusion
maps. Then we have

Pat*(Ori(B#7~, 7)) = incl*Ori (B) @ incl*Ori(/~, 7).

Remark 21.5. The reader may feel cumbersome to go back and check the arguments of
Sections 16 and 19 to see that Lemma 21.4 implies the existence of the orientation on our
Kuranishi structure, though it is in fact quite immediate.

However, in fact, we need orientation only on the main stratum and on the
stratum corresponding to the connecting orbits consisting of two maps RxS! —» M
glued by a periodic solution; for the argument in Section 20. (This is because we
only need the existence of tangent bundle to make the multisection transversal to the strata
of negative virtual dimension.) In that case, the existence of orientation is immediate from
Lemma 21.4.

Proof. The argument below is indicated in Floer’s original paper [19] (see also [21]).
Let /~, 7" e P(H). We write /* =[/*,u*].

We take [0, 00) x S* and D? and glue them at {0} x S* = 9D Let Y be the 2 manifold we
obtain. We call it “a cap with half infinite cylinder”. Note that Y has a natural conformal
structure.

We glue the map u* : D? — M with the map [0, c0) x ST — M which is a composition of
the projection to the second factor and 7 *. We obtain a map from Y to M. We denote this
map also by u*:Y - M.

Let u: D? — M be a map which restricts to an element of 2(H) at dD?. Choose a cut-off
function y:[0, c0) — [0, 1] which is 0 in a neighborhood of 0 and which is 1 if = > R. We
define the operator P~ (u): LY(Y,u*TM) —» L*(Y,A°(Y) ® u* T M) by

P) — {(1 ~ANDD) + D) on [0, 55" o1
D,o on D“.

Gluing (— o0,0] x S* and D? at {0} x S* we get a 2 manifold Y. Here we choose the
orientation of D? opposite to the standard one. Note that Y and Y are canonically
difftomorphic but have the opposite complex structure. For a map u:D? — M, we can
extend it to Y in a similar way. We can define an operator P (u): LY(Y,u*TM) —
LAY, A°Y(Y) ® u*TM) in way similar to (21.7).

Using the fact that / is a nondegenerate periodic orbit, we can prove that P*(u), P~ (u) are
Fredholm.

Let 0 € n,(M, /) with / € 2(H). We have a homotopy class of maps u:D? — M which

restricts to 7. By gluing h(r, ) = /(t), and resolving singularity at S! by using partition of

unity, we regard u:D? —» M as amap u: Y — M.
We let %(0,/) be the Banach manifold consisting of smooth maps in this homotopy class

such that it converges to 7 at infinity in L§ norm. We can define P*(u) and P~ (u) by
Formula (21.7) for u € #(0, /). Taking the indices of P*(u) and P~ (u), we get elements of
KO(#(0,/)) which we denote by index P7(6) and index P~ (0).
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SuBLEMMA 21.8. There is an isomorphism canonical up to homotopy between
det Index P (6) and det Index P~(6). Here det denotes the determinant line bundle of a virtual
vector bundle considered as a (virtual) bundle over R.

Proof. Fix a positive real number R. Gluing Y—(R, o0)x S* and Y —(— o0, —R) x S!
along boundaries, we get an oriented 2-manifold with conformal structure, which is
isomorphic to CP!. Using partition of unity, we can glue the operators P*(u) and P~ (u) to
obtain an operator P (u)# P ~(u). It is parametrized by u € %(6, /) and we can consider the
index of this family. Since the symbol of the operators are complex linear it follows that this
family of operators can be deformed to a family of complex linear elliptic operators on CPL.
In particular it has a canonical orientation on its determinant line bundle, hence its
determinant line bundle is trivial.

By the sum formula for the index of a family of elliptic differential operators (see, for
example, [24, Section 4]), index bundle for P (u)# P~ (u)is the sum of the index bundles for
P*(u) and P~ (u) in KO group. Therefore we have

det P*(u) # P~ (u) = det P*(u) ® det P~ Y(u).

Since the left-hand side is a trivial bundle, det P*(u) is isomorphic to det P~ (u).
Ambiguity of isomorphisms between real-line bundles are multiplication by a non-
vanishing real-valued functions. Since det P*(u) ® det P™(u) has a canonical orientation,
the isomorphism coming from isomorphism of this bundle is a well-defined positive
real-valued function. Hence the isomorphisms are given uniquely up to homotopy. O

SuBLEMMA 21.9. det Index P™(0) is a trivial bundle.

Proof. Fix ug representing 6 e n,(M, /). We replace P (u) in the proof of Sublemma 21.8
by P*(u,). Using a partition of unity, we glue the elliptic differential operators P~ (u) and
P ™ (u,) to get an elliptic differential operator on CP! with complex linear symbol. Hence its
index bundle has a canonical orientation. By the sum formula for a family of index, we have

det Index(P~(u)# P *(uo)) = det Index (P~ (u)) ® det Index(P " (uy)).

Since the left-hand side is trivial and since P*(u) is a fixed operator, it follows that
det Index P~(0) is a trivial bundle. O

Remark 21.10. Conley-Zehnder index is regarded as Atiyah-Patodi-Singer type index
for P~ (u). (See Appendix of [42].)

Now for each 7 =[/,u]e?(H), we fix for a moment 0;em,(M,/) such that
07 #(— u) € ker ¢, nker ¢.,. (This condition is independent of the representative (7, u).) We
take the representative so that u; € 0; and fix it for a moment. We next fix a trivialization of
the bundle Index P7(67). Then the trivialization of Index P~(6;) is induced by Sublemma
21.8. We are going to discuss later the effect of the change of the choices of 8 € 7, (M, ), the
trivialization of Index P*(6)).

Once we fix them we can find Ori(/~, /") e KSO(#(/~, /7)) as follows. We take

a compact subset 4 (7, 7)< #(/~, 7/ )and #(0;../F) = B(0;. /*). We then define

Pat: # (0, )Vx H (L™, Iy x A (07, ) = B(0)
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by using partition of unity. By fixing the first and third component to u; , we obtain a map
Pat: 4 (7™, /") — #(0). By sum formula for family of indices, we have

Index (D0, B) = Pat*(Index(P ~(0;-)) + incl* Index(P*(67-))
+ incl*Index(Dy 0y 4.7 =, 7 7).

Hence the trivializations of det Index(D,0, ), det IndexP~(uz-) and det IndexP ™ (uz-)
induce an orientation of incl* Index(D,d;, w.? ", 7). Since it is natural with inclusions, we
obtain an orientation of Index(D;0; .7 ~, 7 ) namely the lift Ori(/ =, /") e KSO(B(/ ™, /™).

We next discuss the effect of the change of 6, € n,(M, 7).

SuBLEMMA 21.11. Let uy, uy:D?* — M such that [/,u,] = [/, u,]. Let 0; € n,(M,/) be the
homotopy class of u;. Then there is a canonical one-to-one correspondence between the
trivialization of Index P~(0,) and Index P (0,).

Proof. We choose u: D? — M such that [£,u,] = [/,u,] = [£/,u]. Then h > h# u defines
a map #(0;,/;) — %(0). (The latter is the space of maps h:S% — M such that h*c; =
o =0.)

Thus, by index sum formula, the orientation of Index(D,0;0)e KO(#(0)) and orien-
tation of detIndex P*(u) determines orientation of both of detIndex P (u;) and
det Index P~ (u,). Sublemma 21.11 follows. O

Remark 21.12. The space %(0)is disconnected in general. The trivialization of it may not
be unique. However we can fix it as follows. Each element of / € #(0) induces an elliptic
complex Index(D,0;0) on CP! whose symbol is the same as the Dolbeault complex over
CPL. The space of elliptic operator on CP! whose symbol is the same as the Dolbeault
complex is connected and there is a canonical orientation on it, which is induced by the
complex orientation. This argument works for Z(f) also. This orientation is one we used to
define Ori(f) e KSO(%(p)).

Using Sublemma 21.11 we find that we need only once to choose an orientation of
Index P~(0,) for each 7 € (H). (Then the others are induced automatically.)

We furthermore will make the orientation compatible for the action of A on Z(H). Let
B € A, we represent it by a map h:CP! — M. Choose [/,u] € Z(H). We may assume that
u(0) = h(0). Hence by gluing we have

det Index P* (B #u) = det Index P (u) ® det Index(D,0;f) ® det T,,0)M*.

Hence using trivialization of det Index(D,0;f) and orientation of M we find that the
orientation of Index P (u) induces orientation on Index P (u# f). By Sublemma 21.11 and
its proof, this correspondence is independent of the choice of & and is compatible by the
identification of the orientations for different choice of w.

Therefore, if we fix a choice of trivialization of det Index P (u) such that [/, u] € 2(H),
then for any [/,u’] € #(H), we have a trivialization of det Index P~ (u'). In other words, we
are only to choose orientations for each element of 2(H). (This is a finite set.)

If we choose orientations of det Index P~ (u) in this way, (21.4.3) is immediate from the
definition.
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We next prove (21.4.2). Let us consider a compact set .#'(/~, /7)< #(/~, /") and
H(O7-,{%) = B(0;-,/F). We then define a map

Pat: #(0; 0 VAL, 77— BO; ./ ) (21.13)
by gluing. Then by index sum formula we have the following isomorphism.
Pat*(det Index(P ™ (07-))) = det Index(P*(07-)) ® det incl* Index(Dy0y.4,7 ., 7). (21.14)

Then by definition and the proof of Sublemma 21.11, we find that isomorphism (21.14) is

compatible with trivializations.
We now prove (21.4.2). We choose #(7;, 7;+1) < #(/:, 7;+1) such that

Pat (K (71, 02)x H' (L5, I3) S H(71, 7).
Furthermore we choose #'(0;, /) = #(0;./) such that

Pat (K (07, () x H (L1, £3)) S H(07,,42)

Pat (A (07, 41) x H (71, 13)) < H (07,1 3)

Pat (K (07,,02)x H (03, 7)) S H(07,. 3).
We then find that the following diagram is homotopy commutative:

HOr )} KLy, D)X H(L o, £3) P A0, 0)x H (L, 73)
lPatxl lPat

H Oz, 0 2) x H (L, 1) _fa H (07,4 3)
Diagram 21.15.

(21.4.2) follows immediately from Diagram 21.15, (21.14) and the index sum formula.

We finally remark what happens when we change the choice of the orientations of
Index P*(u) for [/,u] = 7. Suppose that we have two choices. Put ¢; = 1 if the two choices
gives the same orientation and ¢; = — 1 otherwise. Then we find that the orientation class
changesas Ori(/~,7 ") e &7 Ori(/ =, 7). Here we let { + 1} act on KSO by reversing the

Thus we can find a chain 1somorphism between corresponding Floer’s chain complex by
putting 67 > &70;.

22. COMPUTATION OF FLOER HOMOLOGY

In this section, we complete the proof of Theorem 1.1. We prove

THEOREM 22.1. There exists an isomorphism

HF (M,0)= H,.,(M:Q ®A. 22.1)

Theorem 1.1 will follow from Theorem 22.1 immediately, [35, 52].

By Theorem 20.5, we may take any hamiltonian such that all periodic solutions are
nondegenerate, to calculate the Floer homology. We take a time independent map
h: M — R as our hamiltonian. Namely we put H(p,t) = h(p). We assume that h: M —- R is
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a Morse function and we put
Crit(h) = {x € M | dh(x) = 0}.

For a point x € Crit(h), we put 7 ,{t) = x, hence 7, is an element of LM. We attach a trivial
disk (u.(p) = x) and put 7, = [/,, u,]. We remark that 7, is a periodic solution of X ;. Since
V2h is nondegenerate it follows that 7, is a nondegenerate periodic solution.

We next perturb h a bit and assume:

(22.2.1) Gradient vector field Vh is Morse-Smale. Namely, the stable and unstable mani-
folds of Vi are transversal.

We next assume that i is C2-small, it then follows that:
(22.2.2) There is no 1 periodic orbit other than 7., x € Crit(h).

Using the fact that h is C?-small, we find that Conley-Zehnder index for a critical point
x of H satisfies u(7,) = n(x) — n, here 5(x) is the Morse index of x.

We are going to show that, for this hamiltonian, the Floer’s chain complex C(H,J) is
isomorphic to Morse-Witten complex of & tensored with A. Let us recall here very briefly
the definition of Morse-Witten complex.

For x~,x™ e Crit(h) we put

da
d_f+v~,-mh=0
U T
My x",xT)=177:R->M lim () = x*
T— + o

We divide it by an R action and denote the quotient space by .#,(x~,x™). (22.2.1) implies
that .#,(x~, x ") is a smooth manifold. Its dimension is calculated by using Morse index n(x)
such that

dim 4, (x",x7) =n(x") —n(x™) — 1. (22.3)

Ay(x~,x7) has an orientation. We will discuss the way to take it later in this section.
Now we define Morse-Witten complex as follows.

Ck(Ma h) = @ Qéx

nx) =k
xe Cr(H)
aéx = Z ['ﬂh('xa y)]éy
ye Cri(H)
ny) =nx) —1

Here [.#,(x, y)] € Qs “order counted with orientation” as usual. It is known that 0 = 0
and

H,(C,(M, H),0) = H,(M;Q).

(See for example [65]).
We now start the proof of Theorem 22.1. The key observation (which is due to Floer) is
that, since our hamiltonian is time independent, it follows that there is an S*-action on our

moduli space C,%(ZX—, 7). Let C,%(Zx_, /..)% be a fixed point set. We remark that
M -y Y = My(x~,x7) set theoretically. For y = .#(x~,x"), we denote by h, the
corresponding element in C.#(7.-, 7.+)*". (Namely h(z,t) = y(7).)
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MAINLEMMA 22.4. W e can choose system of multisections s, , transversal to 0 and satisfy- 4 roof ts ¢ g,

ing other properties we assumed in Section 21 and that S har{: and
~ ~ ) o recels as tf
(224.1) If £y = ,u~({2)~—|— 1, then s,,(0) = C (74, 75). CM was a‘é
(2242) Ifoe CH(/ -, 7<) then the obstruction bundle E,, is trivial. out b
(22.4.3) The orientation is preserved by the diffeomorphism CH (7, 7)*" = My(x~,x7). st @
VI?Q
. . seclion

We first prove Theorem 22.1 assuming Mainlemma 22.4. We first remark that
C,//(Zl, 75)% is empty unless 7y =Pp# 0,0y =P#7. for some x~, x, . It then follows
from Mainlemma 22.4 that if u(7;) = u(7,) + 1 then

> 7 o ['%h(x_=x+)] Zl zﬁ#zx’a ZZ zﬁ#z:f’
[CA(s 7)) = {O otherwise.

Hence, by using (22.2.2) also, isomorphism (22.1) holds in the level of chain complex if we
choose multisection, etc. as in Mainlemma 22.4. Theorem 22.1 follows. ]

We now prove Mainlemma 22.4. We first remark that (22.4.2) is a consequence of (22.2.1)
as we will discuss later, together with the proof of (22.4.3). Let 7;, 7, be as in (22.4.1). By
(22.4.2) we find that C.#(7,, 7,)® is isolated from other part of C.#(/,, 7). We remark that
the action of S on C.#(/y, 75) — C.U(7,, 7,0 is locally free. Hence we can define a
Kuranishi structure of negative dimension on Kum n 5;/": Y&’H o-émcan X '

Cuy Ty~ Culy 7y || induces one on Xfsi i S

1 : 2
S ochs Freely $32
We then choose a multisection so that it is transversal to 0. Therefore the zero point set on

. mulkisedtion on bjmﬁ WU stndine
net just CM. So how does

Lefting work L What do we cut

is empty. We lift this multisection to C.#(71,7,) — C.#(71,7,)° , then sp(0) = CH(T 1, 75) oub with ol
is satisfied. " CML)
However we need to be a bit more careful so that our multisections satisfy compatibility Qual hew, ab
conditi0~ns we assu~med in Section 21. In order to do so, we have to work on the induction |, @64
on .o/ y(/1) — .o y{/ ) hence to study the moduli space of virtual dimension 1 or less is not ( MWW”}‘)
enough even when we only need to construct a Kuranishi structure on the moduli space of o thes ?
virtual dimension 1 or less. So we proceed as follows. ¢
First as we remarked that (22.4.2) is valid for any index. Therefore again C.#(7,, 7,)* is
isolated from other part of C.#(7, /,). Because of (22.4.2), we may choose the Kuranishi
structure and multisection on C.# (74, 7,)%" so that E, is 0 (and hence it is automatically
Sl-invariant.)
Once we observe it, we construct the S!-invariant multisection and Kuranishi structure,
and good coordinate system on C.# (Z 1) — CA (Z L) by induction on .« H(Z 1) — MH(Z 3),
in the way we discussed above. (That is going down to

CAM 1, 03) — CHMT, 75
St '

CHMTr75) — CAUMT 1T,
St '
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We finally prove (22.4.2) and (22.4.3). We include here an explanation of coherent
orientation for .#,(x~, x™). Let W¥x) and W*x) be the unstable and stable manifolds of the
gradient flow Vh at x. We fix an orientation of each of T, W*(x).

Let y e . #4,(x",x™). We choose an orientation of T,-M. Hence using y, we obtain an
orientation of T,-M. Therefore we obtain orientations of T, - W5(x *). We may identify a
neighborhood of y € .#,(x~,x ") with a neighborhood of y(ty) € W¥x " )n W¥x")nh~c)
in Wix7)nW*x")nh™}c). (Here h{(x~) < ¢ < h(x™)). Since we obtain an orientation of
T,.yh ™ '(c) by using orientation of T,-M we gave and using the parallel transport along the
path 7, we obtain an orientation of W*x")nW*¥x")nh~(c) at y(zo). If we change
the orientation of T,-M, then the orientations of W*x~) and Ty, ,h™(c) change while
the orientation of W*%x")nh~Yc) does not change. Hence the orientation of
W x)n W¥x")nh~(c) does not change. Namely the orientation we put on the neighbor-
hood of W¥x~)nW*x")nh~Yc) is independent of the orientation of T,-M and depends
only on orientations of W*x *). It is easy to see that this orientation is compatible with the
gluing map in Morse theory:

AM(X1, X2) X M (X2, X3) = Mp(X1, X3).

Remark 22.5. The discussion above works for nonorientable manifolds also. (But in this
paper we are studying symplectic manifold which is oriented.)

In order to compare this orientation to the one in the connecting orbit C.#(7,-, /)",
we rewrite it by using a similar method to Section 21.
Lety € 4,(x~,x ™). We consider the linearized operator L, of the gradient flow equation

da
& Vi) =o0.
dt

We regard L, as
L,:Li(R;y*TM) - LAR;y*TM). (22.6)

L, is a differential operator of first order and is asymptotic to

d
—+Vi.h ast— +o0.
dt

Since x* is a nondegenerate critical point, it follows that V2 + A is invertible. Therefore,
since L, is an ordinary differential operator, (22.6) is a Fredholm operator.
Let y:R —[0,1] be a smooth function such that

() = 0 —-l<t<x1
A= 1> 2

L7 (x): L4([0, o0), T, M) — LA([0, c0), T,M)

L™(x):Li((— o0,0], T.M) = L*(— o0,0], T,M)
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L*(x) = % + %(1)Vih (22.7)

L*(x) is again a Fredholm operator. It is easy to see that
ker L™ (x) = T,W*¥x)
ker L™ (x) = T.W*x) (22.8)

and also these operators are surjective. Let ye.#,(x",x"). We can glue the operators
L~(x7), L,, and L*(x") to obtain an operator L™(x")# L,#L"(x") on a long interval
[— RR].

Now we recall that we fixed orientation of each T, W*(x). We fix an orientation of T.-M
for a moment. We then obtain an orientation of det Index L™ (x~) and det Index L™(x™).
On the other hand, the operator L™(x7)# L,#L™(x™) is deformed to the operator D/dt
(covariant derivative). The index of D/dr (regarded as an operator of interval of finite
length), is identified to T,-M or T.-M. (They are identified to each other by the parallel
transport along 7) Hence the orientation of T,-M induces one on
Index(L™(x7)# L,#L7(x™)).

Thus the trivialization of detlndexL, is induced from the trivialization of
det Index L™(x7), det Index L™(x™), det Index (L™ (x~)# L,#L"(x™)).

If we change the orientation of T,-M then the trivialization of det Index L*(x™) and
det Index(L™(x")# L,#L"(x")) changes and the trivialization of det Index L™(x~) does
not change. Hence the trivialization of detIndex L, is independent of the orientation
of T.-M.

It is straightforward to see that the orientation of .#,(x~,x™*) we discussed above
coincides to one we discussed first.

Now let h, € C M-, 7.+)> be the element of corresponding to y € .#,(x~,x ™). We find
that there is an S* action on L{(R x S*;h*TM) and L3R x S1;A> R x S1) ® h¥TM) and
that DhﬁH is S'-invariant. We decompose

LIRx SLh*TM) = @ LYR x S*; b TM),,
LARxSLAY R X SY @ h*TM) = @ LR x SLA (R x SY) @ h* TM),,

such that S* acts on Li(R x S*;h¥TM),, and L*R x S;;A®Y R x SY) ® h¥*TM),, by z r>z™.
The operator Dy, dy induces

(D, Op)m: LIR x SLhETM),, » LARx SH AR x $1) @ h¥ TM),,.

= D
(Dy, Op)m = e 2nm + A7),

such that the operator norm of A(7) is close to 0. This is because we assume our function s to

be C?-close to 0. It follows that the operator (Dy, Oy)m 1s invertible for m # 0. Hence the
kernel and the cokernel of D, 0y are the same as that of (D, dy)o. We find also that (Dy, d)o
1s the same as L,. (See Appendix B 1 [43, 62]). (22.4.2) follows.
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To show (22.4.3) we choose the map u , : D* - M such that u , (p) = x *. We obtain an
operator P*(u*) as in Section 21. We find that this is also S!-invariant. Moreover we can
glue it with D, d in S'-invariant way. Then when we deform P~ (u~)#D;, 0y# P (u™) to
the Cauchy-Riemann operator, we can do it while keeping S!-invariance. Namely we can
take P(a) such that P(0)=P (u")#D, 0y#P*(u"), P(1)=10, and that P(a) is S'-
equivariant. We may choose P(a) so that the index of (P(a)),, (the part where S* acts by
z > z™) is always zero during perturbation for m # 0. Furthermore we can choose P(a) so
that (P(a)), can be identified to the deformation of L™(x7)#L,#L"(x") to D/dz. (We
remark that the choice of orientation of Index P~ (u,) corresponds one to one to the choice
of orientation of T,.-W*(x™).) (22.4.3) then follows from construction.

The proofs of Mainlemma 22.4, Theorems 22.2 and 1.1 are now complete. O

23. KONTSEVICH-MANIN’S AXIOMS

In this section, we state and verify the axioms formulated in [39] on the
Gromov-Witten invariant constructed in Section 17. In fact once the machinery we
developed in this paper are given, the argument below is a minor modification of one

in [39].

Tueorem 23.1.1. I}, 5 is invariant by the action of symmetric group (by exchanging the
Sactors for H*(M,Q)®™ and by renumbering the marked points for C.H ;).

We remark that we can make our Kuranishi structure and multisections invariant of the
action of the symmetric group acting by exchanging the factors, since this group is a finite
group. Theorem is then obvious from construction. |

The next axiom by Kontsevich-Manin is that the degree of u is equal to
2n(g — 1) — 2fcy. This is immediate from Definition 7.12 or from the fact that the dimension
of our Kuranishi structure on C.# (M, J, B) is 2m + 2fc (M) + 2(3 — n)(g — 1).

We use the terminology, basic, in the same way as [39]. Namely, we say that 1)}, 5 is
basic if (¢g,m) =(0,3),(1,1),(g,0). Let e € H*(M;Q) be the Poincaré dual to the funda-
mental class.

Tueorem 23.1.2. If I}, 4 is not basic, then we have

g1 ® - @ o1 ®eh) =l I s (71 @+ ® Y1)

here mn:CMym— CMym—1 is the map forgetting the last marked points and m,!:
H¥CM Q) > H*HC M, - 1;Q).

For the proof we construct a map @,,: C.#4 (M, J, p) = CM g m—1(M,J,B). For a mo-
ment we do not assume that If]‘fm,ﬁ is not basic. Let C.#, ,(M, J, B)o be the set of all stable
maps (X, h) which is still stable after removing the last marked point. Obviously, there exists

a map ﬁ:m: C'%y,m(Ms Ja ﬁ)O - C'%g‘m—l(Ma Jaﬁ)

LemMmA 23.2. If we assume either If]‘fm,ﬂ is not basic or p #0, m # 0 then the map

Tom: Cll M, J, B)o = CM y -1 (M, J,p) is extended t0 7ip: C M ym(M,J, p)— CMyp—1(M,J,p)
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If I}V, 4 is not basic, then the following diagram commutes.

C'%g,m(M’ J’ ﬂ) T C'%y,m—l(Ma Jaﬁ)

e
l !
Cllym N Cllly 1

Diagram 23.3.

Proof. Let (X,h) be an element of C.#4,,,(M,J,p) — C.M,,(M,J,p). Let o be the
component of X containing the mth marked point. Then & is constant on X, and
2go + mg = 3 where g, is the genus of X, and m, is the number of points on X, which is
marked or singular.

We claim that gy = 0. In fact we know that there is one (mth) marked point on Z,. Hence
if go = 1 then there is no singular point on Z,. Hence X is nonsingular and (g, m) = (1,1). If
I}, 5 is not basic, this is impossible. If § 5 0 this is impossible also since h is constant on
%, and there is no other component.

Now we have gy = 0 and mq = 1,2, 3. It then follows from the assumption that I f]‘dm 518
not basic or f # 0 that £ # X,. Namely there exists at least one singular point on £,. Hence
there are two possibilities.

(23.4.1) Z, has one singular point and there is one marked point (say the kth one) on it
other than mth one.
(23.4.2) Z, has two singular points and there is only one marked point, the mth one.

In case (23.4.1), we remove X, from X and put kth marked points at the position where
2 was attached. In case (23.4.2), we remove X, from X and glue it at the two points where
X, was attached. (Since & is constant on X, h induces a map after modification.) Thus we
have defined #,,: C.#,,,(M,J,p) = CM - 1(M, ], ). O

We remark that this map 7,,:C.#,,,(M,J,B)— C.4H,,,-1(M,J,p). can be regarded as
a universal family. Namely the fiber of %, at (X, h,) is identified to X itself divided by the
group Aut (X, h,). For the point of X, which is neither singular nor marked it is immediate
to find the corresponding point in 7, *(Z,, h,). (Regard that point as mth marked point). If
x € X, coincides to the kth marked point, then to find the corresponding element of
7o 1(Z,, h,), we attach CP! at x and put kth and mth marked points on CP*. (The map will
be constant there.) Such an element is unique and in %, 1(Z,,h,). Finally, if xe X, is
a singular point, where two components X, and X,, meet, then we take CP! and glue ,, X,
at x,, x,,, respectively, to CP. We put also mth marked point on this CP!. We again find an
element of 7, (Z,, h,). We remark that these two cases correspond to (23.4.1) and (23.4.2),
respectively.

Proof of Theorem 23.1.2. Using the above description, we find that the Kuranishi
structure on C.#, ,,—1(M, J, f) induces one on C.#, (M, J, f) as follows.

We assume that I}, ; is not basic. Let ¢ =(X,, h,) e C.ll, ,—1(M, J, B). We take
a chart (U,, T, E;,s;) around it. (U, = ,/T;). Let [X,]€ W ,/A,, be the chart of
CMy -1 around [X,]. There is a homomorphism I'; - A, and a map , —» W, which is
I', » A, equivariant. There is a universal family of Riemann surface W, — W, (namely the
fiber of x € W, is identified to the Riemann surface represented by x), on which A, acts. The
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inverse image m,, 1(W,/A,) is equal to W,/A,. Now we put

T JXW,WJ

U, T
This is an orbifold. On [76, we have an orbibundle E, and its section §, induced by E, and s,,
respectively. It is straightforward to verify that they define a Kuranishi structure on
Clly (M, J,P).

Using Lemma 17.8 in the same way as the proof of Theorem 17.11, we can prove that we
can use this Kuranishi structure to define I}!, ;. To see this we reinterpret the above
Kuranishi structure as follows. Let E, be the subspace of C*(Z,; A°! (Z,) ® h¥ TM) used
to define Kuranishi structure on C.#, ,,—1(M, J, f). We may choose so that the support
of elements of E, is disjoint from marked or singular points. For each element of
(X .h¥) er, 1 (Z,, hy) we can regard E, as a subspace of C*(Z;;: A (Z5)® h* TM). We
use it to define a Kuranishi structure. It is easy to see that the structure we obtain is the one
described above. We can therefore apply the proof of Theorem 17.11.

Next we take multisection s, and lift it to a multisection §; of C.#, ,,—1(M, J, p). We
then have

$7H0) =57 10)x Cttypy CM g, m (23.5)
as a chain over Q. Since the composition of Poincaré duals and =,,! is realized by taking
a fibre product x ¢, . CM,,, Theorem 23.1.2 follows. O

Tueorem 23.1.3.

0 if B#0
Ié‘{s,ﬂ("h@“/z@e&):{hl Ao Z:ﬁzo

Proof. The proofis similar to the discussion of Section 22. We choose a cycle C;,i = 1,2,
dual to y; and that C; is transversal to C,. By dimension counting we need to consider only
the case codim C; + codim C, = 2n + 2fc;.

We consider the moduli space C.#, ,(M, J, p). It has a Kuranishi structure of dimen-
sion 2n + 2fc; — 2. We have the following commutative diagram similar to Diagram 23.3

Diagram 23.6.

We can choose multisections s, on C.#,,(M,J,B) so that (evyxevy)s, (0)n
(CyxCy)=0.

Now we show that the Kuranishi structure and multisection s, on C.#, (M, J, f)
induce ones on C.#,s(M, J, p). We can do it by modifying the argument of the proof of
Theorem 23.1.2. The argument there itself cannot be applied directly since C.# , is empty.
However the reinterpreted way works. Namely, we take subspace E, of
CP(Zy; AP (Z,) @ h¥TM) for oeCly,(M,J,B), lift it and use it to construct
a Kuranishi structure on C.#, 3(M, J, ). Then the multisection s, can be lifted to a multi-
section s, on C.#,3(M,J,B) such that (ev;xev,)s’y H0)n(Cyx C,)=0. Hence
I 5(11 ® 7y, @e)) =0if  #0.
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If =0, the map C.#y (M, J, O)L Co2(M, J,0) is not well-defined. So the
discussion above breaks down. In this case, however, the moduli space C.#, 3(M, J, 0) is
identified to M itself and is transversal. Thereore the theorem holds in this case also. []

Tueorem 23.1.4. If degy,, = 2 and if 1), 4 is not basic then we have

nm!(lgjj\:!m,ﬂ (Vl@ ®Vm)) ZJ\Vm'Iﬁ,dm—l,ﬂ (Vl@ ®Vm—1)
B

Proof- We again use Lemma 23.2 and (23.5). We choose Poincaré dual C; of y; and
acycle Bof C.#, ,—, of codimension deg 1%, 1 s (71 ® *++ ® ym-1). We choose a multisec-
tion s, such that s, *(0) is transversal to C; and B. Hence the (set theoretical) intersection
s;”H0)N(Cy x ++- x Cy,—_1 x B) consists of finitely many points. We can then choose Poin-
caré dual C,, to y,, so that it is transversal to all the maps represented by this finitely many
points s,”1(0)n(Cy x -+ x C,,_; x B). Using (23.5) we find that

SA:r_l(O)m(CIX ><C‘mXTCrr_tlB) = {((Za,ha),x)ES(;_l(O)ﬂ(cl Xoeee Xcm—IXB))
X Cp|xelmh,}. (23.6)

We remark that the left- and right-hand sides of the conclusion are obtained by counting
the order of the left- and right-hand sides of (23.6) together with sign and multiplicity,
respectively. By using the fact that (23.6) is the identity of Q-cycles, we can check that the
multiplicity and sign coincide. Theorem 23.1.4 follows. O

Tueorem 23.1.5.

(23.1.5.1) 1300 (71 ® =+ ® ) =j A A mela,,
M
(23.152) 1Y o(el) = 7(M)ed,
(23.15.3) Y o) = f (Cous (M) A )Ry .
M

Here ¢t = c*(0(1)) is the canonical generator of second cohomology of C.#; , = CP*
(homeomorphism), y(M) is the Euler number and c is a universal constant we define later.

Proof. (23.1.5.1) is immediate from the fact that C.#, (M, J,0) = M x C.#, ,, and is
transversal.

To show other two formulas, we consider C.#; {(M, J, 0). Set theoretically it coincides
with M x C.#, ;. However this moduli space is not transversal. The cokernel of the
linearized operator, in this case, coincides to H1((T?2,J;:); C) ® T M at (x,(T 2, J:)).
This consists of an orbibundle on M x C.#, ;. Hence, by definition, we are only to calculate
the orbifold Euler number of this bundle over an orbifold M x C.# ;.

We find that

Cn(HO’l((Tza sz)ac) ® TxM) = Cn(TxM) X e(c),//“ + Cn— I(TXM) Xy (HO’ 1((T2> JTZ); C)

Hence by putting ¢; (H**((T %, J;:);C) = cet,, ,, we obtain (23.1.5.2) and (23.1.5.3). [
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To state the next result, we need a notation. Let A, be a homogeneous basis of
H*(M; Q). We put g, = [, Ay A A, and let (g°) = (gu) ™"

Letg, + g, =9g,.my +my =mand p = p, I p,:m; I m, —» m be a bijection. We obtain
Qp:Clly, 1 X Clly, m,+1— C M, as follows. LeT(Zi,_zi)e CMy, . We glue Z; and
2, at my + 1th and m, + 1th marked points and obtain X. We regard kth marked point of
(X, z;) as pi(k)th marked point of X. We have (X;,z)e C.#4, , in this way. We put

QDp((Zl, 71), (22,22)) =(Z,2).
Using p; we obtain, pf: H*(M; Q)®™ — H*(M; Q)®™.

THeoreM 23.1.6.

O o Lm p () =1 Y Y gLy 1.5, (PF )X AL Ig) 1.5, (PF (X) X A).
p=p+B, ab

Here + depends only on the degree of the factors [39].
Proof of Theorem 23.1.6. By the evaluation at last marked points, we have

E L: U Clly, s +1(M, J, B1)x Clly, ,+1(M, J, Bs) > M? (23.7)
BitB.=8

Let A = M? be the diagonal. We find that the inverse, image E L~ 1(A) can be identified to
a union of strata of C.#, ,(M.,J,0) and that the following diagram commutes.

Diagram 23.8.

We remark that we may assume that these maps are extended to the products of their
Kuranishi neighborhoods. We can choose our Kuranishi structure so that
E L:U,xU, — M? is of maximal rank everywhere. Then the Kuranishi structure of
Clly, m+1(M, J, p1)%x Clly, m,+1(M, J, B) induces a Kuranishi structure on E L~ !(A).
We can then extend this Kuranishi structure to C.#,, ,, +1(M, J, p) and use it to define
Gromov-Witten invariant. This argument we use to construct the Kuranishi structure , etc.
compatible to the Diagram 23.8, is the same as we discussed in detail in Section 19, namely
using induction on energy to make Kuranishi structure compatible to all the gluing maps.
Hence we do not repeat it here.
We next remark that Yot g** A, A, is Poincaré dual to the diagonal. Hence we have

TC*[E L_l(A)]\(pik(x)Xp;‘(x)) = i Z Zgablf]\f,ml-%—l,ﬂl(p:lk(x)XAa)ij\f,mz-%—l,ﬂz(p%((x)XAb)
B=p.+p; ab

Theorem 23.1.6 then follows from the commutavity of Diagram 23.8. O
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Let :CMly_y 4+2— CM,, be the map corresponding to gluing together last two
marked points.

Tueorem 23.1.7.

Y s() = £ gL 1 (6 X A X Ay).
ab

The proof is the same as Theorem 23.1.6.
We thus completed the proof of the axioms of Kontsevich-Manin [39] except the
Motivik axiom.
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APPENDIX: ANOTHER NORMALIZATION

In Section 15, we used a kind of “center of mass’ argument in order to kill ambiguity

coming from infinitesimal automorphisms of .. Here we give another way of killing
ambiguity.

Let = = (2., h,) be a stable map. (Here X, denotes a semi-stable curve possibily with

marked point.) Recall that our pair (Z, h) of a semi-stable curve £ and a map h:X - M is
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said to be close to 7, if there exists { =(£,a) €  geform.c X resolve.e 4 € CP(h TM) and
a biholomorphic map $:X — X, preserving marked points, such that h>9~! and
(he)approx,c.u are close in smooth topology on each irreducible components of X .. If
X, contains unstable components, Aut(X.) is not finite and there are uncountably many
choices of a biholomorphic, map 3.

To make sense of the equation dh € X, we have to fix a representative (., h,) of T and
normalize the identification map 3. (We choose and fix a represntative of = once for all.)

There are six possibilities of unstable components.

(i) g = 0 and two singular points without marked points.
(i) g = 0 one singular point and one marked point.
(iii) g = 0 and one singular point without marked points.
(iv) g = 0 and one or two marked points.

(v) g = 0 without singular or marked points.
(vi) g = 1 without singular or marked points.

{Among these six cases, (iv)—(vi) are the cases when X, consists of one irreducible com-
ponent. In the case when two singular points are identified in case (i), X, also consists of one
irreducible component. In other cases, X, consists at least of two components.)

For each unstable component 2, ,, we put new marked points away from neck regions
so that . , becomes a stable component and the number of new marked points is as small
as possible. We also require the following condition. Suppose that there exists ¢ € Aut()
and unstable components X, , , X, , so that (X, ,) =X, , . If his not a multiple covered
map on these components, such a ¢ is unique. In this case we require that ¢ maps new
marked point on X, to new marked point on X, , and h is an embedding near these
marked points. If & is a multiple covered map, we take all ., (j =1, ...,7) such that
@;(Z.,,,) =X, for some ;€ Aut(r) for j=2,...,/. Put minimal number of marked
points on X, so that it becomes stable. We choose marked points so that & is an
immersion near these points. These points are mapped by ¢; to X, and we regard them as
new marked pointson X, (j =2, ... ,/). (This construction is not invariant under Aui(z).
We however, restore Aut(t)-action on a neighborhood of 7, later.)

For each new marked point p e X, ,, take an embedded (2n — 2)-dimensional disk &, in
M, which is transversal to h(X. ,) at p. We assume that ., = Z, when p and ¢(p) are
marked points, where ¢ € Aut(7).

Recall that X, ; is obtained by gluing

ZI,V(V) = Er,v — U D|ux|m(x)

s: singular
points of X .

along boundaries. Hence, if a = (a,) € csotve.. 18 sSmall and p € X (v), the following condi-
tion for 9:X — X, . makes sense:

he3~ s w(p) €, (A.1)

(In other words, we consider a subspace C *{h¥ TM) consisting of u e C*{h¥ T M) tangent
to &, at p, if &, 1s an image of a flat disk in 7,,M by the exponential map.)

We can establish results in Sections 12, 13, 14 using (A1) in place of (15.8).
The action of Aut(z) is restored in the following way. Firstliy, we consider ¢ € Aut(z)

such that ¢ is identity except on one component X ,. If ki is close to h,, sois he 3 1o po 3.
Remember that . is an immersion on some neighborhood U(p;) of new marked point p;.
Hence, for each pj, there is a unique point p;e U(p;) such that ho3 1o @(p}) € Z,. Note
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that X, becomes a stable curve after adding “new marked points” on unstable components.
We denote it by .. Since £, : = |J Z.:(v) and p; are close to p;. T, with extra marked
points p; is close to X . with extra marked points p; in the sense of stable curves. Hence,
there exist '€  geform:c X resolve,c and a biholomorphic map ¢:X. . — X, . such that
¢(p;) = p;. (Here p;e X, , is considered also as points in X .(v) = X :..) We define an
action of @ € Aut(t) by sending (h, 3) to (h= 3~ 1o @= 3, ¢ = 9). (Here we forget extra marked
points.)

As for other ¢ € Aut(z), there are @; € Aut(t),j = 1, ... , k, which are identities except on
one component for each j, such that ¢, --- © @, ° @ interchanges new marked points on
different components as prescribed before. Then it is obvious that our construction is in
variant under the action of ¢, ° -+ ° @, ° @. Hence we get the action of Aut(t) on the space
of collections (£, h, 3), where &€ getorm.c X resolve.t» N2 — M, and $:Z -2 - is a
biholomorphic map satisfying he3 ~!(p;) e D,

For h:X — M close to 7, we consider all $:% — X, such that k=9~ '(p;) € Z,,, which
are finitely many. Then, for s € E, we take the average of Emb; ;) .(s) and denote it by s(h).
Then the equation

¢

oheE,

means that 0h = s(h) for some s € E . Note that this equation is invariant under the action
of Aut(t) described above. We write

g {u € C*(h¥ TM)

tha_zr u= 0
u(p;) is tangent to 2, |

=

Then Aut(t) acts 0N geform, t X resolve,r X map,: 1N @ similar way as above.
This gives a local chart of a neighborhood of 7. (cf. Sections 12 and 13.)



