Abstract Linear Algebra - Problem Set 5 Instructor: Katalin Berlow

The homework is out of 10 points total.

- 1. (6 points) Let $T: V \to W$ be a linear map between finite dimensional vector spaces. Prove that the following are equivalent.
 - I. T is bijective (both injective and surjective).
 - II. There is another linear map $T': W \to V$ where $T \circ T'$ is the identity map on W and $T' \circ T$ is the identity map on V. We call this T' the *inverse* of T and write it as T^{-1} .
 - III. T is injective and dim $V \ge \dim W$.
 - IV. T is surjective and dim $V \leq \dim W$.
- 2. (2 points) Let $T: V \to W$ be a linear map between finite dimensional vector spaces. Prove that the following are equivalent.
 - I. T is bijective.
 - II. For every basis v_1, \ldots, v_n of V, we have that $T(v_1), \ldots, T(v_n)$ is a basis for W.
 - III. For some basis v_1, \ldots, v_n of V, we have that $T(v_1), \ldots, T(v_n)$ is a basis for W.
- 3. (1 point) Let $T: V \to W$ and $S: W \to U$ be bijective linear maps. Prove that

$$(S \circ T)^{-1} = T^{-1} \circ S^{-1}.$$

4. (1 point) Let $T: V \to V$ be a linear map. Prove that if $T^n = 0$ for some $n \in \mathbb{N}$, then T is not invertible.

Extra Credit:

- 1. Let $T: V \to V$ and $S: V \to V$ be linear maps on a vector space V.
 - (a) (1 point) Assume that V is finite dimensional. Show that S and T are both bijective if and only if $S \circ T$ is bijective.
 - (b) (2 points) Find a counterexample to this when V is infinite dimensional.

- 1. (6 points) Let $T: V \to W$ be a linear map between finite dimensional vector spaces. Prove that the following are equivalent.
 - I. T is bijective (both injective and surjective).
 - II. There is a another linear map $T': W \to V$ where $T \circ T'$ is the identity map on W and $T' \circ T$ is the identity map on V. We call this T' the *inverse* of T and write it as T^{-1} .
 - III. T is injective and $\dim V \ge \dim W$.
 - IV. T is surjective and dim $V \leq \dim W$.

$$\boxed{I \Rightarrow II}$$
 It was proven in lecture that if $T:V \Rightarrow W$ is surjective, then
dim V 2 dim V. So, if T is bijective (I), then T is injective and
surjective and so, we have dim V 2 dim W, giving us II.
$$\boxed{I \Rightarrow II}$$
 It was proven in lecture that if $T:V \Rightarrow W$ is injective, then
dim V ≤ dim W. So, if T is bijective (I), then T is injective and
surjective and so, we have dim V ≤ dim W, giving us II.
$$\boxed{III} \Rightarrow II$$
 Assume T is injective and dim V ≥ dim W. Since T is
injective, $T(V_1), \ldots, T(U_n)$ are linearly independent for any basis V_1, \ldots, V_n
of V. Since $T(V_1), \ldots, T(V_n)$ are linearly independent and there are
 $n = \dim V \ge \dim W$ many of them, then form a basis. So, mapping
 $S(T(V_1))$ to V_1 gives us a well-defined map S, which is an inverse
for T.

 $\overline{III} = > \overline{II} \quad Assume \quad T \quad is \quad subjective \quad and \quad \dim V \leq \dim W. \quad Since \quad T is$ subjective, if $V_{1,...,Vn}$ is a basis for V, $T(V_1), \ldots, T(V_n)$ is spanning in W.But, since dim V $\equiv \dim W$, $T(U_1), \ldots, T(U_n)$ is a Basis. So, defining S by S(T(4)) = U, gives us a well-defined inverse for T.

 $\boxed{I=>II} \quad If \quad T \text{ is bijective, for each we we there is exactly one veV}$ with T(v)=w. Sending $T^{*}(w)=v$ then gives us a well-defined inverse This is also linear since for w, $we \in w$, we can write $w_{i}=T(v_{i})$ and $w_{i}=T(v_{i})$. So, $T^{*}(w_{i}+w_{i})=T^{*}(T(v_{i})+T(v_{i}))=T^{*}(T(v_{i}+v_{i}))$ since T is linear, $=T^{*}oT(v_{i}+v_{i})=v_{i}+v_{i}=T^{*}(w_{i})+T^{*}(w_{i})$. To prove that T is homogeneous, note that if w=T(v), then $T^{*}(cw)=T^{*}(cT(w))=T^{*}oT(cv)$ $= cv = cT^{*}(v)$. So, T^{-1} is linear.

 $\boxed{\blacksquare \rightarrow \blacksquare} Assome T has inverse T'. Then, T' is both a left inverse and a right inverse. We've shown in class that having a left inverse is equivalent to being injective and having a sight inverse is equivalent to being subjective. Since we can get from any statement to We've proven: <math display="block">\boxed{\blacksquare} \qquad \boxed{\blacksquare} \qquad \boxed{\blacksquare} \qquad \boxed{\square} \ \boxed{\square} \ \boxed{\square} \qquad \boxed{\square} \qquad \boxed{\square} \ \boxed{\square$

- 2. (2 points) Let $T: V \to W$ be a linear map between finite dimensional vector spaces. Prove that the following are equivalent.
 - I. T is bijective.
 - II. For every basis v_1, \ldots, v_n of V, we have that $T(v_1), \ldots, T(v_n)$ is a basis for W.
 - III. For some basis v_1, \ldots, v_n of V, we have that $T(v_1), \ldots, T(v_n)$ is a basis for W.

 $\overline{II} \Rightarrow \overline{I}$ Assume T is not bijective. Let $V_{1,...,V_{N}}$ be a basis for V. Then, we will show $T(V_{1}),...,T(V_{N})$ is not a basis for W, thus showing not II. Case I: T is not injective. Then, $Null(T) \neq \{0\}$. Let $V \in Null(T)$ be nonzero. Then, we write $V = a_{1}v_{1} + \dots + a_{N}v_{N}$. Then, $T(v) = a_{1}T(v_{1}) + \dots + a_{N}T(v_{N}) = 0$ so $T(V_{1}),\dots,T(v_{N})$ are not linearly independent: Case Z: T is not subjective. Then there is well with we span(T). But, then for any $a_{1}v_{1} + \dots + a_{N}v_{N} \in V_{1}$ we have $T(a_{1}v_{1} + \dots + a_{N}v_{N}) = a_{1}T(v_{1}) + \dots + a_{N}T(v_{N}) \neq w$. So, we span $(T(u_{1}),\dots, T(v_{N}))$. So, $T(V_{1}),\dots, T(v_{N})$ is not spanning. II 3. (1 point) Let $T: V \to W$ and $S: W \to U$ be bijective linear maps. Prove that

$$(S \circ T)^{-1} = T^{-1} \circ S^{-1}.$$

proof: Note that:
$$(50T)o(T^{-1}o5^{-1}) = 5o(ToT^{-1})o5^{-1} = 505^{-1} = id$$
, and
 $(T^{-1}o5^{-1})o(50T) = T^{-1}o(5^{-1}o5)oT = T^{-1}oT = id$. So, $T^{-1}o5^{-1}$ is an inverse
for SoT.

4. (1 point) Let $T: V \to V$ be a linear map. Prove that if $T^n = 0$ for some $n \in \mathbb{N}$, then T is not invertible.

proof: If T is bijective, then $\operatorname{null}(T^2)=0$ since if $x\neq 0$ so $T^2(x)=0$, then T(T(x))=0. If T(x)=0, then T is not injective since $x\neq 0$. If $T(x)\neq 0$, then the same argument holds since $T(T(x)^{\neq 0})=0$. By iterating this, we see that if T is bijective, $\operatorname{Null}(T^n)=0$ for any nell. So, we cannot have $T^n=0$ (when $V\neq \{0\}$).

- 1. Let $T: V \to V$ and $S: V \to V$ be linear maps on a vector space V.
 - (a) (1 point) Assume that V is finite dimensional. Show that S and T are both bijective if and only if $S \circ T$ is bijective.
 - (b) (2 points) Find a counterexample to this when V is infinite dimensional.

Assume T is not injective. Then let
$$a \neq b$$
 be so $T(a) = T(b)$. Then
SoT(a) = SoT(b), so SoT is not bijective. So, if SoT is bijective,

T is injective. But, being bijective is equivalent to being injective and if $T: V \rightarrow W$, dim $V \ge \dim W$. Since $\dim V = \dim V$, T is bijective

If S is not subjective, there is some $b \in V$ with $b \neq S(v)$ for any $v \in V$. Then $b \neq S \circ T(v)$ for any $v \in V$, so $S \circ T$ is not bijective Sus if $S \circ T$ is bijective, S is surjective. Since also, dimV=dimV, S is bijective

b) Let $V = \mathbb{R}^{N}$. Then, let $F: V \rightarrow V$ be so $F(x_0, x_1, ...) = (0, x_0, x_1, ...)$ and $B: V \rightarrow V$ be so $B(x_0, x_1, ...) = (x_1, x_2, ...)$. B is not injective and F is not surjective but $BoF = id_V$.