Abstract Linear Algebra - Problem Set 5 Instructor: Katalin Berlow

The homework is out of 10 points total.

- 1. (6 points) Let $T: V \to W$ be a linear map between finite dimensional vector spaces. Prove that the following are equivalent.
 - I. T is bijective (both injective and surjective).
 - II. There is a another linear map $T': W \to V$ where $T \circ T'$ is the identity map on W and $T' \circ T$ is the identity map on V. We call this T' the *inverse* of T and write it as T^{-1} .
 - III. T is injective and dim $V \ge \dim W$.
 - IV. T is surjective and dim $V \leq \dim W$.
- 2. (2 points) Let $T: V \to W$ be a linear map between finite dimensional vector spaces. Prove that the following are equivalent.
 - I. T is bijective.
 - II. For every basis v_1, \ldots, v_n of V, we have that $T(v_1), \ldots, T(v_n)$ is a basis for W.
 - III. For some basis v_1, \ldots, v_n of V, we have that $T(v_1), \ldots, T(v_n)$ is a basis for W.
- 3. (1 point) Let $T: V \to W$ and $S: W \to U$ be bijective linear maps. Prove that

$$(S \circ T)^{-1} = T^{-1} \circ S^{-1}.$$

4. (1 point) Let $T: V \to V$ be a linear map. Prove that if $T^n = 0$ for some $n \in \mathbb{N}$, then T is not invertible.

Extra Credit:

- 1. Let $T: V \to V$ and $S: V \to V$ be linear maps on a vector space V.
 - (a) (1 point) Assume that V is finite dimensional. Show that S and T are both bijective if and only if $S \circ T$ is bijective.
 - (b) (2 points) Find a counterexample to this when V is infinite dimensional.