Abstract Linear Algebra - Problem Set 4 Instructor: Katalin Berlow

The homework is out of 10 points total.

- 1. (2 points) Let V and W be vector spaces. Let L(V, W) denote the set of all linear transformations from V to W.
 - (a) Show that L(V, W) is a subspace of W^V .
 - (b) If dim V = n and dim W = n, what is the dimension of L(V, W)? Prove your answer.
- 2. (2 points) Let $x \in \mathbb{R}$ be a fixed real number. Define the map $\phi_x : L(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$ by $\phi(f) = f(x)$. Show that ϕ is a linear map.
- 3. (4 points) Let $f: V \to W$ be a linear map between vector spaces V and W.
 - (a) Show that if f is injective, then $\dim V \leq \dim W$.
 - (b) Show that if f is surjective, then $\dim V \ge \dim W$.
- 4. (2 points) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with $T \circ T = 0$.
 - (a) Show that $im(T) \subseteq ker(T)$.
 - (b) Show that $\dim(\operatorname{im}(T)) \leq \frac{1}{2}n$.

1. (2 points) Let V and W be vector spaces. Let L(V, W) denote the set of all linear transformations from V to W.

(a) Show that L(V, W) is a subspace of W^V .

We will show that
$$L(V,W)$$
 satisfies the subspace axioms.
1) The zero function for is linear: fo $(a+b) = 0 = 0+0 = f_0(a) + f_0(b)$ and $f_0(ca) = 0 = cO = cf_0(a)$
for any $a, b \in V$, and $c \in F$. So, $f_0 \in L(V,W)$.

2) Let
$$f_{1}g \in L(V,W)$$
. Then, $f+g$ is linear. For $v_{1}w \in V$ and $c \in F$, we have $(f+g)(v+w) = f(v+w) + g(v+w) = f(v) + f(w) + g(v) + g(w)$ since f and g are linear. Then, $f(v) + f(w) + g(v) + g(v) = f(v) + g(w) = (f+g)(v) + (f+y)(w)$.
 $Also, (f+g)(cv) = f(cv) + g(cv) = cf(v) + cg(w) = (cf + cg)(v) = c(f+g)(v)$. So, we have $f_{1}g \in L(V,W)$.

3) We will show that if
$$f \in L(U, W)$$
 and $c \in F_i$ then $c f \in L(U, W)$.
To do this, we will show $c f$ is linear. Let $V, W \in V$, $a \in F$. Then,
 $(c f)(V + W) = c(f(v + W)) = c(f(v) + f(w)) = c f(v) + c f(w)$. Also, $(c f)(av) = c(f(av))$
 $= c a f(v)$ since f is linear. $c a f(v) = a(c f)(v)$. So, $c f \in L(V, W)$.

Thus, L(V,W) is a subspace of W'.

(b) If dim V = n and dim W = m what is the dimension of L(V, W)? Prove your answer.

Claim: din
$$L(V,W) = nm$$
.
Proof: We will construct a basis of size nm for $L(V,W)$.
Let $V_{i_1}...,Vn$ and $W_{i_1}...,Wn$ be bases for V and W . Define linear
maps $T_{i_1j}: V \rightarrow W$ by $T_{i_2j}(V_i) = W_j$ and $T_{i_2j}(V_k) = 0$ for $k \neq i$.
Then $\{T_{i_2j}: i \leq n, j \leq m\}$ is a basis for $L(V,W)$.

These are linearly independent: Suppose $a_{i,1} T_{i,1} + a_{i,2} T_{i,2} + \ldots + a_{n,m} T_{n,m} = 0$. Then, for each isn, $(a_{i,1} T_{i,1} + \ldots + a_{n,m} T_{n,m})(v_i) = a_{i,1} T_{i,1}(v_i), \ldots a_{i,m} T_{i,m}(v_i)$ since $T_{k,j}(v_i) = 0$ if $k \neq i$. This is equal to $a_{i,1} w_i + \ldots + a_{i,m} w_m = 0$ and so, $a_{i,1} = \ldots = a_{i,m} = 0$ since $w_{i,1} \ldots w_n$ are linearly independent. Since this holds for each $i \leq n$, the coefficients are all zero.

These are spanning: Let $S \in L(V, W)$. As shown in lecture, we can uniquely define S by where basis vectors are sent. Since $w_{i_1,...,w_n}$ is a basis for W, we can write $S(V_i) = a_{i_1}, w_i + ... + a_{i_1m}, w_m$ for each $i \leq n$. Then, $S(V_i) = a_{i_1}T_{i_1}(V_i) + ... + a_{i_{1,1}}T(V_m)$ for each i. So, we have that for any basis vector V_{K_3} , $\sum_{\substack{i_1 \leq n, m \\ i_i \leq n, m}} \sum_{\substack{i_j \leq n, m \\ j \leq m}} T_{K_j}(V_K) = S(V_K)$. Since a linear map is defined uniquely by where basis vectors are sent, $S = \sum_{\substack{i_j \leq n, m \\ i_j \leq n, m}} T_{i_j}$.

So, dim
$$(L(V,W)) = nm$$
. D

2. (2 points) Let $x \in \mathbb{R}$ be a fixed real number. Define the map $\phi_x : L(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$ by $\phi(f) = f(x)$. Show that ϕ is a linear map.

We will show
$$\Phi_x$$
 is linear for any xelf.
Let S, T $\in L(\mathbb{R}, \mathbb{R})$. Then $\Phi_x(S+T) = (S+T)(x) = S(x) + T(x) = \Phi_x(S) + \Phi_x(T)$
Let a $\in \mathbb{R}$, S $\in L(\mathbb{R}, \mathbb{R})$. Then $\Phi_x(aS) = (aS)(x) = a S(x) = a \Phi_x(S)$.
So, Φ_x is linear. \Box

3. (4 points) Let f: V → W be a linear map between vector spaces V and W.
(a) Show that if f is injective, then dim V ≤ dim W.

<u>**Proof:</u>** Let $f: V \rightarrow W$ be injective. Then, let $V_1, ..., V_n$ be a basis for V. We then have that $f(v_1), ..., f(v_n)$ is linearly independent as chown in lecture since f is injective. So, since there are $n = \dim V$ many linearly independent vectors in W, $\dim W \ge n = \dim V$. \Box </u>

(b) Show that if f is surjective, then $\dim V \ge \dim W$.

proof: Let
$$f: V \rightarrow W$$
 be surjective Let $w_{1,...,}$ where a basis for W . Then, since f is surjective, there are $V_{1,...,}$ $V \rightarrow eV$ with $f(v_1) = w_{1,...,}$ $f(v_m) = w_m$. As shown in lecture, since $f(v_1), ..., f(v_m)$ are linearly independent, so are $v_{1,...,}$ Vm . So dim $V \ge dim W$.

- 4. (2 points) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with $T \circ T = 0$.
 - (a) Show that $im(T) \subseteq ker(T)$.

Let $V \in im(T)$. Then, there is $w \in \mathbb{R}^n$ where T(w) = v. But, To T(w) = 0 and so T(v) = 0 and $v \in Null(T)$.

(b) Show that $\dim(\operatorname{im}(T)) \leq \frac{1}{2}n$.

By rank-nullity, we have $\dim(\mathbb{R}^n) = \dim \operatorname{Null}(T) + \dim \operatorname{ran}(T)$, but ran (T) $\leq \operatorname{Null}(T)$ so $\dim \operatorname{ran}(T) \leq \dim \operatorname{Null}(T)$. So, 2 dim ran (T) $\leq \dim \operatorname{ran}(T) + \dim \operatorname{Null}(T) = \dim \mathbb{R}^n = n$. Thus, $\dim (\operatorname{ran}(T)) \leq \frac{1}{2}n$.

1. (3 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a function which is additive: for any $x, y \in \mathbb{R}$ we have f(x+y) = f(x) + f(y). Assume also that f(1) = 1. Does f have to be the identity function? (The function where f(x) = x.) Prove or disprove.

We can view IR as a vector space over Q. Let B be a
basis for this space. Let
$$b_1 \neq b_2$$
 be two isoational basis vectors.
define $f:(1)=1$, $f(b_1)=b_2$, $f(b_2)=b_1$, and $f(b)=b$ for all other
be B. This defines a (Q)-linear map since we've specified where
the basis vectors are sent. So, it is additive, $f(1)=1$, and by
construction, $f \neq id_R$.