Abstract Linear Algebra - Problem Set 4 Instructor: Katalin Berlow

The homework is out of 10 points total.

- 1. (2 points) Let V and W be vector spaces. Let L(V, W) denote the set of all linear transformations from V to W.
 - (a) Show that L(V, W) is a subspace of W^V .
 - (b) If dim V = n and dim W = m, what is the dimension of L(V, W)? Prove your answer.
- 2. (2 points) Let $x \in \mathbb{R}$ be a fixed real number. Define the map $\phi_x : L(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$ by $\phi(f) = f(x)$. Show that ϕ is a linear map.
- 3. (4 points) Let $f: V \to W$ be a linear map between vector spaces V and W.
 - (a) Show that if f is injective, then $\dim V \leq \dim W$.
 - (b) Show that if f is surjective, then $\dim V \ge \dim W$.
- 4. (2 points) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with $T \circ T = 0$.
 - (a) Show that $\operatorname{range}(T) \subseteq \operatorname{null}(T)$.
 - (b) Show that $\dim(\operatorname{range}(T)) \leq \frac{1}{2}n$.

Bonus Question

1. (3 points) Let $f : \mathbb{R} \to \mathbb{R}$ be a function which is additive: for any $x, y \in \mathbb{R}$ we have f(x+y) = f(x) + f(y). Assume also that f(1) = 1. Does f have to be the identity function? (The function where f(x) = x.) Prove or disprove.