Abstract Linear Algebra - Problem Set 2 Instructor: Katalin Berlow

The homework is out of 10 points total.

1. (3 points) Let E denote the set of all points on earth (a sphere). We will call a continuous function $f: E \to \mathbb{R}$ a **temperature map**. Show that the set T of all temperature maps forms a vector space over the field \mathbb{R} .

In this vector space, addition and scalar multiplication of two functions is pointwise: (f+g)(x) = f(x) + g(x) and $(cf)(x) = c \cdot f(x)$.

Hint: Recall that adding two continuous functions, or scaling a continuous function, gives a continuous function.

2. (2 points) Let V be a vector space over F with subspaces $W, U \subseteq F$. Recall the definition of a direct sum:

$$W+U:=\{v\in V: \exists w\in W, \ \exists u\in U, \ v=w+u\}.$$

Show that W + U is a subspace of V.

3. (5 points) Let $S = \{1, \ldots, 5\}$. We let $\mathcal{P}(S)$ denote the **powerset** of S, which is the set of all subsets of S. Given two subsets $A, B \subseteq S$, we let

$$A \triangle B := (A \cup B) \setminus (A \cap B).$$

This is the set of element which are in A xor (exclusive or) B. The set $A \triangle B$ is called the symmetric difference of A and B. We let $A + B := A \triangle B$.

Recall the field on two elements $\mathbb{F}_2 := \{0, 1\}$. For a subset $A \subseteq S$ we define

$$0 \cdot A = \emptyset$$
 and $1 \cdot A = A$.

Show that $\mathcal{P}(S)$ is a vector space over \mathbb{F}_2 with addition and scalar multiplication defined as above.

Extra Credit:

4. (3 points) Show that the vector space $\mathcal{P}(S)$ defined in problem 3 is the same vector space as $(\mathbb{F}_2)^5$. This is the vector space over \mathbb{F}_2 whose elements are vectors of length 5 with entries in \mathbb{F}_2 .

That is, find a way to bijectively match elements of $\mathcal{P}(S)$ to elements of \mathbb{F}_2 in such a way that addition and scalar multiplication doesn't change. This is the same as finding an invertible linear map between these vector spaces.

1. (3 points) Let E denote the set of all points on earth (a sphere). We will call a continuous function $f: E \to \mathbb{R}$ a **temperature map**. Show that the set T of all temperature maps forms a vector space over the field \mathbb{R} .

In this vector space, addition and scalar multiplication of two functions is pointwise: (f+g)(x) = f(x) + g(x) and $(cf)(x) = c \cdot f(x)$.

Hint: Recall that adding two continuous functions, or scaling a continuous function, gives a continuous function.

We will show that T is a vector space over R.

Commutativity: Let
$$f,g \in T$$
. Then for $x \in E$, $(f+g)(x) = f(x) + g(x) = g(x) + f(x)$
because $f(x), g(x) \in \mathbb{R}$ and $+$ is commutative over \mathbb{R} . We then have
 $g(x) + f(x) = (g+f)(x)$ and so $f+g = g+f$.

Associativity: Let fight T. Then, for
$$x \in E$$
, we have $((f+g)+h)(x) = (f(x)+g(x))+h(x)$
= $f(x) + (g(x)+h(x))$ since $f(x), g(x), h(x) \in IR$ and t is associative in IR . We then have:
 $f(x) + (g(x)+h(x)) = (f+(g+h))(x)$ so $(f+g)+h = f+(g+h)$.
Also, let $a, b \in IR$, feT. Then $(ab)f(x) = a(bf(x))$ since \cdot in IR is associative. So,
 $(ab)f(x) = a(b(f(x))$.
Additive identity: Define the function $f_0 \in T$ where f_0r all $x \in E$, $f(x) = 0$. Then,
for any $a \in T$, $x \in E$, $(f_0 + q_1)(x) = f_0(x) + q(x) = 0 + q(x) = q(x)$, so $f_0 + q = q$ and so f_0 is

the additive identity.

<u>Additive inverse</u>: Let $f \in T$ be arbitrary. Define $g \in T$ where $g(x) = -1 \cdot f(x)$. Then (f + g)(x) = f(x) + g(x) = f(x) - f(x) = 0. So, g is the additive inverse for f.

Multiplicitive identity: Note that IER and for any feT, If (x) = f(x) so If = f.

Distributive Properties: Let a, be R, fige T. Then, (a(f+g))(x) = a((f+g)(x)) by associativity of scalar multiplication. a((f+g)(x)) = a(f(x)+ag(x)) = af(x)+ag(x)) by distributivity of • over + in Th. af(x)+ag(x) = (af+ag)(x) so a(f+g) = af+ag. Let a, be Th, fe T. Then, (a+b)f(x) = af(x)+bf(x) since • is distributive over + in Th. So, (a+b)f = af+bf.

Thus T is a vector space over R. A

2. (2 points) Let V be a vector space over F with subspaces $W, U \subseteq \mathbf{X}$ Recall the definition of a direct sum:

$$W + U := \{ v \in V : \exists w \in W, \ \exists u \in U, \ v = w + u \}.$$

Show that W + U is a subspace of V.

We will show UtW satisfies the axioms of a vector space.

<u>Additive identity</u>: Note $O_V = O_W \in W$ and $O_V = O_U \in U$ since W and U are subspaces. So, $O_W + O_U \in W + U$ by definition of the sum of vector spaces. But, $O_W + O_U = O_V$, So, $O_V \in W + U$.

<u>Closure under</u> +: Let Z_1 , $Z_2 \in U + W$. By definition of U + W, Z_1 and Z_2 must be of the form $Z_1 = W_1 + U_1$ and $Z_2 = W_2 + U_1$ for $W_1, W_2 \in U$ and $U_1, U_2 \in U$. So, $Z_1 + Z_2 = (W_1 + U_1) + (W_2 + U_2) = (W_1 + W_2) + (U_1 + U_2)$ by comutativity and associativity of t in V. Since W and U are closed under t, we have $W_1 + W_2 \in U$ and $U_1 + U_2 \in U$. So, $(W_1 + W_2) + (U_1 + U_2) = Z_1 + Z_2 \in W + U$. <u>Closure under scalar multiplication</u>: Let at F, ZeWtU. We can write Z=wtu for some we W and ue U by definition of WtU. So, az = a(wtu) = awtau by distributivity of scalar multiplication in V. But, since W and V are closed under scalar multiplication, aweW and aue U and so awtau=azeWtU.

3. (5 points) Let $S = \{1, \ldots, 5\}$. We let $\mathcal{P}(S)$ denote the **powerset** of S, which is the set of all subsets of S. Given two subsets $A, B \subseteq S$, we let

$$A \triangle B := (A \cup B) \setminus (A \cap B).$$

This is the set of element which are in A xor (exclusive or) B. The set $A \triangle B$ is called the **symmetric difference** of A and B. We let $A + B := A \triangle B$. Recall the field on two elements $\mathbb{F}_2 := \{0, 1\}$. For a subset $A \subseteq S$ we define

$$0 \cdot A = \emptyset$$
 and $1 \cdot A = A$.

Show that $\mathcal{P}(S)$ is a vector space over \mathbb{F}_2 with addition and scalar multiplication defined as above.

We will show that P(S) is a vector space over FE.

Commutativity: Let A, BEP(S). Then,
$$A+B=A \Delta B = (A \cup B) \setminus (A \cap B)$$

= (BUA) \ (B \cap A) = B \ A = B+A. So, $A+B = (B+A)$.

<u>Associativity</u>: Let A, B, CEP(S). We wish to show (A+B)+C=A+(B+C). We will prove this via venn diagram.

As we can see, (ABB) a C = A A (B & C).

Note: It is possible to prove this via set arithmetic, but it is painful. <u>Additive identity</u>: Let $O = \emptyset$. Then $\emptyset \circ A = (A \cup \emptyset) \cdot (A \cap \emptyset) = A$ for any $A \in P(S)$

Additive inverse: Let
$$A \in \mathbb{P}(S)$$
. Then let $-A = A$. Then $A \cup -A = A$ and $A \cap -A = A$ so $(A \cup -A) \setminus (A \cap -A) = A \setminus A = \emptyset$.

Multiplicative identity: By definition 1A=A for all AEP(S).

Distributivity: Let A, BEP(5). Note that:

$$I(A+B) = A+B = |A+|B \qquad (0+0) A = \emptyset = \emptyset + \emptyset = \emptyset A + \emptyset A$$
$$O(A+B) = \emptyset = 0A + 0B \qquad (0+1) A = |A = A = \emptyset = A = 0A + |A$$
$$(|+|) A = 0A = \emptyset = A = A + A = |A + |A.$$

And so, we have distributivity.

4. (3 points) Show that the vector space $\mathcal{P}(S)$ defined in problem 3 is the same vector space as $(\mathbb{F}_2)^5$. This is the vector space over \mathbb{F}_2 whose elements are vectors of length 5 with entries in \mathbb{F}_2 .

That is, find a way to bijectively match elements of $\mathcal{P}(S)$ to elements of \mathbb{F}_2 in such a way that addition and scalar multiplication doesn't change. This is the same as finding an invertible linear map between these vector spaces.

We will define a bijective linear map from
$$(F_z)^5$$
 to $P(S)$.
Define $f: (F_z)^5 \rightarrow P(5)$ by $f(z) = A_z$ where neAz iff $z_n = 1$
for example if $z = (0,1,1,0,0)$ then $f(z) = \{2,3\}$.
This is bijective: If $z \neq 4$ then there is an a with $z_n \neq 4$ we but

This is dijective: If EFG then there is an n with
$$z_n \neq y_n$$
, but
then, nef(z) but $n \notin f(y)$ or vice versa. So, f is injective.
If A=S, then defining z by $z_n=1$ iff net, we get $f(z)=A$.
So, f is bijective

f is linear: If $z_{y}e(H_{z})^{s}$, then ne f(z)+f(z) iff ne $f(z) \circ f(z)$ iff ne f(z) exclusive or nef(y). So, ne f(z) + f(z) iff either $z_{n=1}$ exclusive or $y_{n=1}$. This is twe if and only if $z_{n+y_{n}} = 1$. So ne $f(z_{1+y_{n}})$. Also, for $z \in (H_{z})^{s}$, lf(z) = f(z) = f(1z) and $Of(z) = \emptyset = f(0) = f(0z)$.

So, f is linear, and thus $(F_2)^s$ is isomorphic to P(s) as vector spaces.