Abstract Linear Algebra - Problem Set 2
Instructor: Katalin Berlow

The homework is out of 10 points total.

1. (3 points) Let E denote the set of all points on earth (a sphere). We will call a continuous
function f : E — R a temperature map. Show that the set T" of all temperature maps forms
a vector space over the field R.

In this vector space, addition and scalar multiplication of two functions is pointwise: (f+g)(z) =
f(x) +g(x) and (cf)(z) = c- f(x).

Hint: Recall that adding two continuous functions, or scaling a continuous function, gives a
continuous function.

2. (2 points) Let V be a vector space over F' with subspaces W, U C F. Recall the definition of a
direct sum:

W4+U={veV:IweW, uel, v=w+u}.
Show that W 4 U is a subspace of V.

3. (5 points) Let S ={1,...,5}. We let P(S) denote the powerset of S, which is the set of all
subsets of S. Given two subsets A, B C S, we let

AAB:=(AUB)\ (AN B).
This is the set of element which are in A xor (exclusive or) B. The set AAB is called the

symmetric difference of A and B. We let A+ B := AAB.
Recall the field on two elements Fy := {0,1}. For a subset A C S we define

0-A=@and1-A=A

Show that P(S) is a vector space over Fo with addition and scalar multiplication defined as
above.

Extra Credit:

4. (3 points) Show that the vector space P(S) defined in problem 3 is the same vector space as
(F2)5. This is the vector space over Fy whose elements are vectors of length 5 with entries in
Fs.

That is, find a way to bijectively match elements of P(S) to elements of Fy in such a way that
addition and scalar multiplication doesn’t change. This is the same as finding an invertible
linear map between these vector spaces.
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