Abstract Linear Algebra - Problem Set 3

Instructor: Katalin Berlow

The homework is out of 10 points total.

- 1. (a) (1 point) Consider the vector space \mathbb{R} over the field \mathbb{Q} . Show that the vectors 1, $\sqrt{2}$, and $\sqrt{3}$ are linearly independent.
 - Hint: You may assume $\sqrt{6}$ is irrational.
 - (b) (1 point) For $n, m \in \mathbb{N}$, are the vectors 1, \sqrt{n} , and \sqrt{m} always linearly independent? If not, when are they linearly independent?
 - (c) (0.5 point) How many linearly independent vectors can there be in \mathbb{R} over \mathbb{Q} ?
- 2. (2 points) Suppose $v_1, \ldots v_n$ are linearly independent in V and $w \in V$. Show that v_1, \ldots, v_n, w are linearly independent if and only if $w \notin \text{span}\{v_1, \ldots, v_n\}$.
- 3. (a) (2 points) Let $(\mathbb{F}_2)^{\mathbb{N}}$ denote the vector space of all infinite sequences of elements in \mathbb{F}_2 over the field \mathbb{F}_2 . Show that if S is a set of finitely many linearly independent vectors, then we can extend S to a larger set T of linearly independent vectors so that $S \subseteq T$. Hint: Consider the span of S.
 - (b) (1 point) Does this imply that $(\mathbb{F}_2)^{\mathbb{N}}$ is infinite dimensional? Prove your answer.
- 4. (2.5 points) Let V be a 6 dimensional vector space. Let $U, W \subseteq V$ each be subspaces with dimension 4. What is the maximum dimension $U \cap W$ can be? What is the minimum dimension? Prove your answers.

Extra Credit:

4. (3 points) We call a polynomial *prime-ish* if all of its exponents are prime. For example, $12x^7 + \frac{4}{7}x^3$ is prime-ish but $x^2 + 3x$ is not. Show that any polynomial with real valued coefficients has a prime-ish multiple.

Hint: This is a linear algebra class: this will use the fact that polynomials form a vector space.

(a) (1 point) Consider the vector space \mathbb{R} over the field \mathbb{Q} . Show that the vectors 1, $\sqrt{2}$, and $\sqrt{3}$ are linearly independent.

Hint: You may assume $\sqrt{6}$ is irrational.

Lemme: Let $a \in Q$ and $b \in \mathbb{R} \setminus Q$. If $ab \in Q$ then a = 0.

Proof: Let $a \neq 0$. If $ab \in Q$, then $a = ab \in Q$ since Q is closed under multiplication and inverses. But, $a = ab \in Q$, which is a contradiction. \square

b) (1 point) For $n, m \in \mathbb{N}$, are the vectors 1, \sqrt{n} , and \sqrt{m} always linearly independent? If not, when are they linearly independent?

No, they are not always linearly independent: 1, 14, 16 are dependent: $1+\frac{1}{2}4+\frac{1}{4}16=0$.

Claim: If n, m are prime, then 1, In, Im are independent.

Proof: Replace 2 by n and 3 by m in the proof of a. The same proof goes through. I

(c) (0.5 point) How many linearly independent vectors can there be in \mathbb{R} over \mathbb{Q} ?

The set { The IR: n is prime} is linearly independent.

This can be proven using induction and a technique similar to (a) but this is difficult - thus the exten credit.

2. (2 points) Suppose $v_1, \ldots v_n$ are linearly independent in V and $w \in V$. Show that v_1, \ldots, v_n, w are linearly independent if and only if $w \notin \text{span}\{v_1, \ldots, v_n\}$.

proof: (=>) If we span { v,..., vn}, then by v,..., vn, w are linearly dependent by one of the equivalent definitions.

- (=) Assume $v_1,...,v_n,w$ are linearly dependent. Then there are scalars $a_1,...,a_{n+1} \in F$ not all zero, so $a_1v_1+...+a_nv_n+a_{n+1}w=0$. If $a_{n+1}=0$, then $a_1v_1+...+a_nv_n=0$, contradicting linear independence of $v_1,...,v_n=0$, assume $a_{n+1}\neq 0$. Then $w=\left(\frac{a_1}{a_{n+1}}\right)v_1+...+\left(\frac{a_n}{a_{n+1}}\right)v_n$ as desired. \square
- 3. (a) (2 points) Let $(\mathbb{F}_2)^{\mathbb{N}}$ denote the vector space of all infinite sequences of elements in \mathbb{F}_2 over the field \mathbb{F}_2 . Show that if S is a set of finitely many linearly independent vectors, then we can extend S to a larger set T of linearly independent vectors so that $S \subseteq T$. Hint: Consider the span of S.

Proof: Let $S \subseteq \mathbb{F}_2^{N}$ be a finite set of linearly independent vectors. Then, span (S) is finite: since there are finitely many scalars, there are finitely many possible linear combinations of elements of S. So, since \mathbb{F}_2^{N} is infinite, \mathbb{F}_2^{N} span (S) $\neq \emptyset$. Choose $v \in \mathbb{F}_2^{N} \setminus \text{span (S)}$. By the previous problem, $S \cup \{v\}$ is linearly independent since $v \notin \text{span S}$. This is a linearly independent set strictly extending S. \square

(b) (1 point) Does this imply that $(\mathbb{F}_2)^{\mathbb{N}}$ is infinite dimensional? Prove your answer.

Yes: If Π_z^M were finite dimensional, it would have a finite basis $V_1, ..., V_n$. By part (a), we can extend this linearly independent set to a basis. Π

4. (2.5 points) Let V be a 6 dimensional vector space. Let $U, W \subseteq V$ each be subspaces with dimension 4. What is the maximum dimension $U \cap W$ can be? What is the minimum dimension? Prove your answers.

dim UNW & 4 Since UNW & U and dim U=4.

Also, we know dim V & dim(U+W) = dim U+ dim W-dim UNW, so,

dim UNW & dim U+ dim W-dim V = 4+4-6 = 2. So, dim UNW & 2.

To see that these are strict, note that if V=R6,

U=\{(\times_{1,\

4. (3 points) We call a polynomial *prime-ish* if all of its exponents are prime. For example, $12x^7 + \frac{4}{7}x^3$ is prime-ish but $x^2 + 3x$ is not. Show that any polynomial with real valued coefficients has a prime-ish multiple.

Hint: This is a linear algebra class: this will use the fact that polynomials form a vector space.

8 be a polynomial of degree d. Let $S = \{x^{p_1}, x^{p_2}, ..., x^{p_{sin}}\}$ a set of d+1 many prime-ish monomials: Let p1, p2,..., Pd+1 the first d+1-many primes. For those xpies with p>d, can perform polynomial long-division to write x? = 8. fi + 1; where now degree < d. Replace xpi by ri in S. Now, S is a set of d+1 many vectors in Pd., (R). Since dim Pd., (R) = d, must be a linear dependency in S. Write S= {r,...rdu}. we can find a,..., a + ER so a, r, + ... + a d., r = 0. we have $x^{p_i} = g f_i + r_i$ so $r_i = x^{p_i} - g f_i$. Plugating this in, we get a, (xº-gf.)+...+ad, (xº-gfd.)=0. We can expand and regroup get a, xp.+...+ad+, xpm=(a, f, +...+ad+, fd+,) q. The left hand side prime-ish, and the right hand side is a multiple of g. []