Abstract Linear Algebra - Problem Set 3
Instructor: Katalin Berlow

The homework is out of 10 points total.

1. (a) (1 point) Consider the vector space R over the field Q. Show that the vectors 1, /2, and
/3 are linearly independent.

Hint: You may assume V6 is irrational.
(b) (1 point) For n,m € N, are the vectors 1, v/n, and v/m always linearly independent? If
not, when are they linearly independent?

(¢) (0.5 point) How many linearly independent vectors can there be in R over Q7

2. (2 points) Suppose vy, . .. v, are linearly independent in V' and w € V. Show that vy,...,v,,w
are linearly independent if and only if w & span{vy,...,v,}.

3. (a) (2 points) Let (F2)N denote the vector space of all infinite sequences of elements in Fy
over the field Fo. Show that if S is a set of finitely many linearly independent vectors,
then we can extend S to a larger set T" of linearly independent vectors so that S C T.

Hint: Consider the span of S.
(b) (1 point) Does this imply that (F2)Y is infinite dimensional? Prove your answer.
4. (2.5 points) Let V be a 6 dimensional vector space. Let U, W C V each be subspaces with

dimension 4. What is the maximum dimesion U NW can be? What is the minimum dimension?
Prove your answers.

Extra Credit:

4. (3 points) We call a polynomial prime-ish if all of its exponents are prime. For example,
1227 + %x‘a’ is prime-ish but 22 + 3z is not. Show that any polynomial with real valued
coefficients has a prime-ish multiple.

Hint: This is a linear algebra class: this will use the fact that polynomials form a vector space.



(a) (1 point) Consider the vector space R over the field Q. Show that the vectors 1, v/2, and
V/3 are linearly independent.

Hint: You may assume +/6 is irrational.
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b) (1 point) For n,m € N, are the vectors 1, y/n, and y/m always linearly independent? If
not, when are they linearly independent?
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(c¢) (0.5 point) How many linearly independent vectors can there be in R over Q7
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2. (2 points) Suppose vy, ... v, are linearly independent in V' and w € V. Show that vy,...,v,,w

are linearly independent if and only if w & span{vy,...,v,}.
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3. (a) (2 points) Let ()Y denote the vector space of all infinite sequences of elements in [F,
over the field Fo. Show that if S is a set of finitely many linearly independent vectors,
then we can extend S to a larger set T of linearly independent vectors so that S C T
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(b) (1 point) Does this imply that (F)Y is infinite dimensional? Prove your answer.
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4. (2.5 points) Let V be a 6 dimensional vector space. Let U,WW C V each be subspaces with
dimension 4. What is the maximum dimesion U NW can be? What is the minimum dimension?
Prove your answers.

dim UhaW €U since UAWSWU  and  din WA
Ao, we wow diwe V 2 dm(UsW) = dim K+ dime W = divns WaW, 50,

dive UAW 2 di Uk > dm W - 8im N = U+U-b = 2. So, dim LaW 2 2.
o s Yk bage are shicy, wole Mat '\f— V=@\6.

W= {(x..u. X3,Xu, 0,0)& W° : x.,...,x\.eﬂ:ls | omd W= g(o,o, Xy, Yo ¥ayxp) €M xq....,x.eﬁfg,
T, UnW= fomroe®®imme®l (4 g w2

To s dwmUaW can el B Vb W= fOxmnod R PRS- X Sy
da UaW=3. Foc dim UawW =N, lee  w=0L. o, we \ewk

é\w; U.AW Cown b(, Lys‘ o q. a



4. (3 points) We call a polynomial prime-ish if all of its exponents are prime. For example,

1227 + 223 is prime-ish but 2% + 3z is not. Show that any polynomial with real valued
coefficients has a prime-ish multiple.

Hint: This is a linear algebra class: this will use the fact that polynomials form a vector space.
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