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The asymmetric simple exclusion process (ASEP)

↶
q

↷
1

Figure: This state will be represented by the binary word 0101101

A Markov chain for particles hopping on a 1d lattice

Introduced independently in biology by (Macdonald-Gibbs-Pipkin
1968), and in mathematics by (Spitzer 1970)

Many variations: multispecies, open boundary, half space, totally
asymmetric, partially asymmetric . . .

Related to KPZ equation (Corwin-Shen-Tsai 2017), matrix ansatz
(Derrida-Evans-Hakim-Pasquier 1993), multiline queues
(Ferrari-Martin 2007), Macdonald polynomials
(Corteel-Mandelshtam-Williams 2018) . . .
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The multispecies ASEP (mASEP)
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Figure: A state of ASEP(3, 2, 2, 2, 1, 0, 0, 0). This state can be represented by the
word 12200032.

For constant 0 ≤ t ≤ 1, a pair of neighboring particles i , j exchange
with rate t

n if i > j and with rate 1
n if i < j

Irreducible =⇒ there exists a unique stationary distribution

Order the labels into a partition λ. The set of states are the
permutations of parts of λ, denoted Sn(λ)
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The doubly ASEP (DASEP)

Definition (Ash 2023)

n = # sites, p = # allowed species,
and q = # particles

mASEP with exchange rates t
3n or 1

3n
and particles can spontaneously change
their species

A particle’s species can increase with
rate u

3n , and decrease with rate 1
3n

parts+(λ) = # positive parts of λ. The
DASEP(n, p, q) is a Markov chain on

Γp,qn =
⋃

λ1≤p,
parts+(λ)=q

Sn(λ).
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One-line notation DASEP(3,2,2)

110

101

011

102

201

210

120

021

012

220

202

022

Figure: The state diagram of DASEP(3, 2, 2). Bold arrows represent the changes
of species. There is an inherent cyclic symmetry such that the state 102, 021, 210
are essentially the same.
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Overview of main results

110

101

011

102

201

210

120

021

012

220

202

022

(101,(1,1))(110,(1,1)) (011,(1,1))

(101,(2,1))(110,(2,1)) (011,(2,1))

(101,(2,2))(110,(2,2)) (011,(2,2))

2u 1

u 2

Figure: With the notion of lumping, a projection of Markov chains, we will turn
the pictures on the left, to the middle, then to the right, which is a Markov chain
on a set of Young diagrams. Our results generalize Theorem 5.2 in (Ash 2023).
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Notation

The stationary distribution consists of rational functions in t, u. Clear
the denominators and denote the unnormalized steady state
probability of µ by πDASEP(µ)

For each partition λ, let mi = mi (λ) be the number of parts of λ that
equal i . We can also write λ = ⟨1m12m2 · · · ⟩.
For any binary word w , define Sw

n (λ) as the set of all permutations of
λ whose supports are aligned with w (positions of 0’s are the same).

Example

S011
3 (2, 1, 0) = {012, 021}

S011
3 (2, 2, 0) = {022}
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The unnormalized steady state probabilities of
DASEP(3, 2, 2)

µ πDASEP(µ)

011 u + 3t + 4

012 u(u + 4t + 3)

021 u(u + 2t + 5)

022 u2(u + 3t + 4)

Because of cyclic symmetry, we know the steady state probabilities of all
states. Observation:

πDASEP(012) + πDASEP(021 = 2uπDASEP(011)

πDASEP(022) = u2πDASEP(011)
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The unnormalized steady state probabilities of
DASEP(4, 2, 2)

µ πDASEP(µ)

0011 u + 2t + 3

0101 u + 2t + 3

0022 u2(u + 2t + 3)

0202 u2(u + 2t + 3)

0012 u(u + 3t + 2)

0102 u(u + 2t + 3)

0021 u(u + t + 4)
Observation:

πDASEP(0011) = πDASEP(0101)

πDASEP(0012) + πDASEP(0021) = 2uπDASEP(0011)

πDASEP(0201) = πDASEP(0102) by cyclic symmetry and
πDASEP(0102) + πDASEP(0201) = 2uπDASEP(0101)
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Results

Theorem (J.)

Consider DASEP(n, p, q) for any positive integers n, p, q with n > q.

1 For any two binary words w ,w ′ with q ones and (n − q) zeros, we
have πDASEP(w) = πDASEP(w

′).

2 For any binary word w and partition λ = ⟨1m12m2 · · · pmp⟩ such that
m1 + · · ·+mp = q, we have∑

µ∈Sw
n (λ)

πDASEP(µ) = u|λ|−q|Sw
n (λ)|πDASEP(w)

= u|λ|−q

(
q

m1,m2, . . . ,mp

)
πDASEP(w).
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Results

Theorem (J.)

For DASEP(n, p, q) and two partitions λ, µ with
λ1 ≤ p, µ1 ≤ p, parts+(λ) = parts+(µ) = q, we have∑

ν∈Sn(λ) πDASEP(ν)∑
ν∈Sn(µ) πDASEP(ν)

=
|Sn(λ)|u|λ|
|Sn(µ)|u|µ|

.

Remark

If λ = ⟨1m12m2 · · · pmp⟩, then |Sn(λ)| =
( n
n−q,m1,...,mp

)
.
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Homomesy

Definition (Propp-Roby 2015)

Given a set S , an invertible map τ : S → S such that each τ -orbit is finite,
and a function (or “statistic”) f : S → K for some field K of characteristic
zero, we say the triple (S , τ,K ) exhibits homomesy if there exists a
constant c ∈ K such that for every τ -orbit O ⊂ S

1

#O

∑
x∈O

f (x) = c .

In this situation we say that f is homomesic under the action of τ on S , or
more specifically c-mesic.

The average value of the statistic is the same across all orbits.
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Example

10-words inversions

0011 0

0110 2

1100 4

1001 2

average 2

10-words inversions

0101 1

1010 3

average 2

Table: Cyclic shift of binary words

–+++ 0
-+++- 0
+++– 1
++–+ 0
+–++ 0

-+-++ 0
+-++- 0
-++-+ 0
++-+- 1
+-+-+ 0

Table: Cyclic shift of sequence of a (-1) and b (+1). The Boolean statistic output
1 if all initial segments add up to be positive. The average of this statistic is b−a

a+b .
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Homomesy on polynomials with group action

We may define a more general form of homomesy where f takes values in
a polynomial ring over a field of characteristic zero, and consider orbits of
a group action instead of a single map τ .

Then, if we take S to be Sn(λ) with Sq acting on the nonzero parts, and f
to be the statistic πDASEP, our theorem shows that (Sn(λ), Sq, πDASEP)
exhibits homomesy in this more general sense.

If we take S to be the state space Γp,qn with Sn acting on the sites, then
(Γp,qn , Sn, πDASEP) also exhibits homomesy in this more general sense.
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The colored Boolean process

110

101

011

102

201

210

120

021

012

220

202

022

(101,(1,1))(110,(1,1)) (011,(1,1))

(101,(2,1))(110,(2,1)) (011,(2,1))

(101,(2,2))(110,(2,2)) (011,(2,2))
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The colored Boolean process

Definition (J.)

The colored Boolean process is a Markov chain on

Ωp,q
n = {(w , λ)|w ∈ Sn(1

q0n−q), λ1 ≤ p, parts+(λ) = q}

with transition probabilities:

We denote the unnormalized steady state probabilities of Ωp,q
n by πCBP.
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(101,(1,1))(110,(1,1)) (011,(1,1))

(101,(2,1))(110,(2,1)) (011,(2,1))

(101,(2,2))(110,(2,2)) (011,(2,2))

Figure: The state diagram of Ω2,2
3 . For n = 3, p = q = 2, we have binary words

{110, 101, 011} and partitions {(1, 1), (2, 1), (2, 2)}. The product of these two
sets make Ω2,2

3 .
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Lumping

Definition (Kemeny, 1976)

Let {Xt} be a Markov chain on state space ΩX with transition matrix P,
and let f : ΩX → ΩY be a surjective map. Suppose there is an
|ΩY | × |ΩY | matrix Q such that for all y0, y1 ∈ ΩY , if f (x0) = y0, then∑

x :f (x)=y1

P(x0, x) = Q(y0, y1).

Then {f (Xt)} is a Markov chain on ΩY with transition matrix Q. We say
that {f (Xt)} is a lumping of {Xt} and {Xt} is a lift of {f (Xt)}.
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x :f (x)=y1

P(x0, x) = Q(y0, y1).

Then {f (Xt)} is a Markov chain on ΩY with transition matrix Q. We say
that {f (Xt)} is a lumping of {Xt} and {Xt} is a lift of {f (Xt)}.
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Lemma

110

101

011

102

201

210

120

021

012

220

202

022

(101,(1,1))(110,(1,1)) (011,(1,1))

(101,(2,1))(110,(2,1)) (011,(2,1))

(101,(2,2))(110,(2,2)) (011,(2,2))

Fix (w0, λ0) and (w1, λ1). For any µ0 ∈ Sw0
n (λ0), the quantity∑

µ:f (µ)∈Sw1
n (λ1)

P(µ0, µ)

is independent of the choice of µ0, and nonzero only in 4 cases.
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DASEP lumps to the colored Boolean process

Theorem (J.)

The projection map f : Γp,qn → Ωp,q
n sending each µ ∈ Sw

n (λ) to (w , λ) is a
lumping of DASEP(n, p, q) onto the colored Boolean process Ωp,q

n .
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The DASEP lumps to the colored Boolean process

Proposition (Kemeny, 1976)

Suppose p is a stationary distribution for {Xt}, and let π be the measure
on ΩY defined by π(y) =

∑
x :f (x)=y p(x). Then π is a stationary

distribution for {f (Xt)}.

Corollary (J.)

The steady state probabilities of the colored Boolean process and the
steady state probabilities of the DASEP are related as follows:

πCBP(w , λ) ∝
∑

µ∈Sw
n (λ)

πDASEP(µ).
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The stationary distribution of the colored Boolean process

Theorem (J.)

Consider the colored Boolean process Ωp,q
n .

1 The steady state probabilities of all binary words are equal, i.e., for
any w ,w ′ with q ones and (n − q) zeros,

πCBP(w , ⟨1q0n−q⟩) = πCBP(w
′, ⟨1q0n−q⟩).

2 For an arbitrary state (w , λ), we have

πCBP(w , λ) = u|λ|−q

(
q

m1, . . . ,mp

)
πCBP(w , ⟨1q0n−q⟩).
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Example

(101,(1,1))

1

(110,(1,1))

1

(011,(1,1))

1

(101,(2,1))

2u

(110,(2,1))

2u

(011,(2,1))

2u

(101,(2,2))

u2

(110,(2,2))

u2

(011,(2,2))

u2

Figure: The unnormalized steady state probabilities of Ω2,2
3 . The steady state

probability of (110, (2, 1)) is the same as that of (101, (2, 1)) and (011, (2, 1)),
which is u2+1−2

(
2
1,1

)
= 2u times the steady state probability of (110, (1, 1)).
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A further lumping

(101,(1,1))(110,(1,1)) (011,(1,1))

(101,(2,1))(110,(2,1)) (011,(2,1))

(101,(2,2))(110,(2,2)) (011,(2,2))

2u 1

u 2
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Notations

The reverse lexicographic order is a partial order on partitions such that
ν ≤ λ if either ν = λ or for some j ,

ν1 = λ1 . . . νj−1 = λj−1 νj < λj .

Example

(1, 1, 1) < (2, 1, 1) < (2, 2, 1) < (2, 2, 2)

< < <
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Notations

Let λ, ν be partitions, and let mi (ν) denote the number of parts of ν
equal to i .

We say that λ covers ν at i if there exists a unique j such that
λj = νj + 1 = i and for all k ̸= j we have λk = νk , written λ⋗i ν.

We say that ν is covered by λ at i if there exists a unique j such that
νj = λj − 1 = i and for all k ̸= j we have νk = λk , written ν ⋖i λ.

In both cases, we have mi (ν) = mi (λ) + 1

Example

(1, 1, 1)⋖1 (2, 1, 1), (3, 2, 2)⋗2 (3, 2, 1), (3, 2, 2)⋗3 (2, 2, 2)
The partition (2, 2, 1, 0, 0) covers (2, 1, 1, 0, 0) at 2, and the latter is
covered by the former at 1.
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The restricted random growth model

Definition (J.)

Define the restricted random growth model on

χp,q = {λ : λ1 ≤ p, parts+(λ) = q}

which includes all partitions that fit inside a q × p rectangle but do not fit

inside a shorter rectangle, with transition probabilities d
(n)
ν,λ :

Let mi (ν) denote the number of parts of ν equal to i . Transition

probabilities d
(n)
ν,λ are:

If ν ⋖i λ, then d
(n)
ν,λ = mi (ν)u

3n

If ν ⋗i λ, then d
(n)
ν,λ = mi (ν)

3n

In all other cases where ν ̸= λ, d
(n)
ν,λ = 0 and d

(n)
λ,λ = 1−∑

ν:ν ̸=λ d
(n)
ν,λ

We denote the unnormalized stationary distribution of χp,q by πRRG.
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The doubly ASEP (DASEP)

2u 1

u 2

Figure: The state diagram of the
restricted random growth model
on χ2,2.

∼=

u u

1 1

u u
1 1

Figure: In this Markov chain, boxes are randomly
added or removed from the right of any random
row. It lumps to the restricted random growth
model by rearranging parts in weakly decreasing
order.
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CBP lumps to the restricted random growth model

Theorem (J.)

The projection map on state spaces g : Ωp,q
n → χp,q sending (w , λ) to λ

(forgetting the positions of 0’s) is a lumping of the colored Boolean
process Ωp,q

n to the restricted random growth model χp,q.

Corollary (J.)

The unnormalized steady state probabilities of the restricted random
growth model and the steady state probabilities of the colored Boolean
process are related as follows:

πRRG(λ) ∝
∑

w∈Sn(1q0n−q)

πCBP(w , λ).
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Stationarity of the restricted random growth model

Theorem (J.)

For DASEP(n, p, q) and two partitions λ, µ with λ1 ≤ p, µ1 ≤ p and
parts+(λ) = parts+(µ) = q, we have

πRRG(λ)

πRRG(µ)
=

∑
w∈Sn(1q0n−q) πCBP(w , λ)∑
w∈Sn(1q0n−q) πCBP(w , µ)

=

∑
ν∈Sn(λ) πDASEP(ν)∑
ν∈Sn(µ) πDASEP(ν)

=
|Sn(λ)|u|λ|
|Sn(µ)|u|µ|

.
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A close study of p = q = 2

If there were only one species of particle, i.e. p = 1, the stationary
distribution of DASEP(n, 1, q) is uniform.

If there were only one particle, i.e., q = 1, then the stationary
distribution of DASEP(n, p, 1) are given by powers of u, not involving
t due to cyclic symmetry.

Therefore we study the infinite family p = q = 2.
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The stationary distribution of DASEP(n,2,2)

The stationary distributions of DASEP(n, 2, 2) are described by recurrence
relations and differentiate the parity of n.
Let (ak)k≥0 and (bk)k≥−1 be polynomial sequences in u, t satisfying the
recurrence relation

ak = (u + 2t + 3)ak−1 − (t + 1)2ak−2

bk = (u + 2t + 3)bk−1 − (t + 1)2bk−2.

with initial conditions b−1 = 0, a0 = b0 = 1, a1 = u + 3t + 4.

Remark

If we set u = t = 1, the polynomial sequence ak specializes to trinomial
transform of Lucas number 8, 44, 232, 1216 . . . and and bk specializes to
6, 32, 168, 880 . . . which is the binomial transform of the denominators of
continued fraction convergents to

√
5.
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Fun facts about the two sequences

Consider matchings (subset of disjoint edges) of the cycle graph C2k+1 or
line graph L2k+1 with odd number of vertices. Assign each matching M a
weight of (t + 1)|M|(u + 1)k−|M|. Then ak is the sum of weights over all
matchings of a cycle, and bk is that of the line. This can be seen via
induction.

t+ 1 t+ 1 t+ 1 u+ 1
Figure: a1 = u + 3t + 4

• • •
t+ 1

• • •
t+ 1

• • •
u+ 1

Figure: b1 = u + 2t + 3
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The stationary distribution of DASEP(n,2,2)

The unnormalized steady state probabilities of the infinite family
DASEP(n, 2, 2):

When n = 2k + 1 is odd, for 0 ≤ m < k ,

µ πDASEP(µ)

Sn((1, 1, 0, . . . , 0)) ak
0 . . . 010m20 . . . 0 uak + u(t − 1)(t + 1)mak−m−1

0 . . . 020m10 . . . 0 uak − u(t − 1)(t + 1)mak−m−1

Sn((2, 2, 0, . . . , 0)) u2ak

When n = 2k + 2 is even, for 0 ≤ m ≤ k,

µ πDASEP(µ)

Sn((1, 1, 0, . . . , 0)) bk
0 . . . 010m20 . . . 0 ubk + u(t − 1)(t + 1)mbk−m−1

0 . . . 020m10 . . . 0 ubk − u(t − 1)(t + 1)mbk−m−1

Sn((2, 2, 0, . . . , 0)) u2bk
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Thank you!
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