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Lumping from the colored Boolean process to the restricted random
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A special case; combinatorics of (partial) matchings on graphs
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The asymmetric simple exclusion process (ASEP)

q 1

SE XL X YoX

Figure: This state will be represented by the binary word 0101101

@ A Markov chain for particles hopping on a 1d lattice
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The asymmetric simple exclusion process (ASEP)

q 1

SE XL X YoX

Figure: This state will be represented by the binary word 0101101

@ A Markov chain for particles hopping on a 1d lattice

@ Introduced independently in biology by (Macdonald-Gibbs-Pipkin
1968), and in mathematics by (Spitzer 1970)

@ Many variations: multispecies, open boundary, half space, totally
asymmetric, partially asymmetric . ..

o Related to KPZ equation (Corwin-Shen-Tsai 2017), matrix ansatz
(Derrida-Evans-Hakim-Pasquier 1993), multiline queues
(Ferrari-Martin 2007), Macdonald polynomials
(Corteel-Mandelshtam-Williams 2018) . ..
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The multispecies ASEP (mASEP)
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Figure: A state of ASEP(3,2,2,2,1,0,0,0). This state can be represented by the
word 12200032.

@ For constant 0 < t <1, a pair of neighboring particles i, j exchange
with rate £ if i > j and with rate 1 if j < j

Yuhan Jiang (Harvard) The doubly asymmetric simple exclusion proc 4/36



The multispecies ASEP (mASEP)

ol

\(',@ ©)

® 0
- @\@,@JN

Figure: A state of ASEP(3,2,2,2,1,0,0,0). This state can be represented by the
word 12200032.

@ For constant 0 < t <1, a pair of neighboring particles i, j exchange

. t - . . . 1 - . .
with rate — if i > j and with rate - if i <

o Irreducible = there exists a unique stationary distribution
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The multispecies ASEP (mASEP)

17 {
W
e
® ®
s \@ @ ‘)\
\@,/
Figure: A state of ASEP(3,2,2,2,1,0,0,0). This state can be represented by the
word 12200032.

@ For constant 0 < t <1, a pair of neighboring particles i, j exchange
. t - . . . 1 . . .
with rate — if i > j and with rate - if i <
o Irreducible = there exists a unique stationary distribution

@ Order the labels into a partition A. The set of states are the
permutations of parts of A, denoted S,(\)
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The doubly ASEP (DASEP)
AN

wserio| @ n = # sites, p = # allowed species,
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Figure 1: An example of the DASEP: DASEP(3.2, y
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Yuhan Jiang (Harvard)

Definition (Ash 2023)

@ n = # sites, p = # allowed species,
and g = # particles

o mASEP with exchange rates - or -

and particles can spontaneously change
their species
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The doubly ASEP (DASEP)
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Figure 1: An example of the DASEP: DASEP(3.2,

Yuhan Jiang (Harvard)

Definition (Ash 2023)

@ n = # sites, p = # allowed species,
and g = # particles

o mASEP with exchange rates - or -

and particles can spontaneously change
their species
@ A particle’s species can increase with
u o 1
rate 3., and decrease with rate 3

@ partst()\) = # positive parts of A\. The
DASEP(n, p, q) is a Markov chain on

= J S0
)\lépv
parts™(\)=q

.
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One-line notation DASEP(3,2,2)

101

110 . — 011

210 102 021
120 201 012

220 — 022

202

Figure: The state diagram of DASEP(3,2,2). Bold arrows represent the changes
of species. There is an inherent cyclic symmetry such that the state 102,021,210
are essentially the same.
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Overview of main results

(110,

(2.1)) — (101,

(2,1)) «—— (011,

(110,(1,1)) e—— (101,(1,1)) ——— (011,(1,1))

(2,1))

(110,(2,2)) —— (101,(2,2)) —— (011,(2,2))

Figure: With the notion of lumping, a projection of Markov chains, we will turn
the pictures on the left, to the middle, then to the right, which is a Markov chain
on a set of Young diagrams. Our results generalize Theorem 5.2 in (Ash 2023).
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@ The stationary distribution consists of rational functions in t, u. Clear
the denominators and denote the unnormalized steady state
probability of 1 by mpasep (1)
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@ The stationary distribution consists of rational functions in t, u. Clear
the denominators and denote the unnormalized steady state
probability of 1 by mpasep (1)

@ For each partition A, let m; = m;(\) be the number of parts of A that
equal /. We can also write A = (1™M2m2...),

e For any binary word w, define S(\) as the set of all permutations of
A whose supports are aligned with w (positions of 0's are the same).

e S21(2,1,0) = {012,021}
o SY1(2,2,0) = {022}
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The unnormalized steady state probabilities of

DASEP(3, 2, 2)

I TpASEP (14)
011 u+3t+4

012 | u(u+4t+3)
021 | u(u+2t+5)
022 | u?(u+3t+4)
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Because of cyclic symmetry, we know the steady state probabilities of all
states.
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The unnormalized steady state probabilities of
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I TpASEP (14)
011 u+3t+4

012 | u(u+4t+3)
021 | u(u+2t+5)
022 | u?(u+3t+4)

Because of cyclic symmetry, we know the steady state probabilities of all
states. Observation:

) 7TDASEP(012) + WDASEP(OQI = QUWDASEP(Oll)
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The unnormalized steady state probabilities of

DASEP(3, 2, 2)

1 TpASEP (14)
011 u+3t+4

012 | u(u+ 4t +3)
021 | u(u+2t+5)
022 | u?(u+3t+4)

Because of cyclic symmetry, we know the steady state probabilities of all
states. Observation:

o mpasep(012) + mpasep(021 = 2umpasep(011)
o mpasep(022) = u?mpasep(011)
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The unnormalized steady state probabilities of

DASEP(4, 2,2)

p mpasep (/4)
0011 u-+2t+3
0101 u-+2t+3
0022 | u?(u+ 2t +3)
0202 | u?(u+ 2t +3)
0012 | u(u+3t+2)
0102 | u(u+2t+3)
0021 | u(u+t+4)
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The unnormalized steady state probabilities of

DASEP(4, 2,2)

p mpasep (/4)
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Observation:

4 TI'DASEP(OO].].) = WDASEP(O].Ol)
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The unnormalized steady state probabilities of

DASEP(4, 2,2)

p mpasep (/4)
0011 u-+2t+3
0101 u-+2t+3
0022 | u?(u+ 2t +3)
0202 | u?(u+ 2t +3)
0012 | u(u+3t+2)
0102 | u(u+2t+3)
0021 | u(u+t+4)

Observation:
4 TI'DASEP(OO].].) = WDASEP(O].Ol)
) WDASEP(0012) + 7TDASEP(0021) = 2UWDASEP(0011)
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The unnormalized steady state probabilities of

DASEP(4, 2,2)

0 moaser (i)
0011 u+2t+3

0101 | w+2t+3

0022 | u?(u+ 2t +3)
0202 | u?(u+ 2t +3)
0012 | w(u+3t+2)
0102 | w(u+2t+3)
0021 | w(u+t+4)

Observation:
@ mpasep(0011) = mpasep(0101)
o mpasep(0012) + mpasep(0021) = 2umpasep(0011)
(0201)
(0102)

e mpasep(0201) = mpasep(0102) by cyclic symmetry and
Toasep(0102) + mpasep(0201) = 2umpasep(0101)
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Consider DASEP(n, p, q) for any positive integers n, p,q with n > q.

@ For any two binary words w, w' with q ones and (n — q) zeros, we
have mpasep(w) = mpasep(w').

@ For any binary word w and partition A = (1™2™2 ... p™r) such that
my + -+ mp = q, we have

Z 7TDASEP(M) = U|>\‘_q|5,‘;v()\)’7TDASEp(W)

neESK(A)
A|— q
=yl q< )FDASEP(W)-
my,ma,...,Mp

Yuhan Jiang (Harvard) The doubly asymmetric simple exclusion proc 11/36



Theorem (J.)

For DASEP(n, p, q) and two partitions \, i with
A1 < p, 1 < p,partsT(\) = parts™ (i) = g, we have

2vesy(x) TASEP(V)  |S,(N)[ul
> vesy(u) TDASER(V)  [Sp(p)|ulrl”
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Theorem (J.)

For DASEP(n, p, q) and two partitions \, i with
A1 < p, 1 < p,partsT(\) = parts™ (i) = g, we have

2vesy(x) TASEP(V)  |S,(N)[ul
ZVGSn(,u) mpasep(v)  |Sa(p)|ulkl’

If A= (1m2m - p™e), then |Sa(N)] = (,_g . . .mp)-

n—q,my,...,Mmp
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Homomesy

Definition (Propp-Roby 2015)

Given a set S, an invertible map 7 : S — S such that each 7-orbit is finite,
and a function (or “statistic”) f : S — K for some field K of characteristic
zero, we say the triple (S, 7, K) exhibits homomesy if there exists a
constant ¢ € K such that for every T-orbit O C S

#Zf(x):c.

In this situation we say that f is homomesic under the action of 7 on S, or
more specifically c-mesic.

v

The average value of the statistic is the same across all orbits.
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10-words | inversions
0011 0 10-words | inversions
0110 2 0101 1
1100 4 1010 3
1001 2 average 2
average 2

Table: Cyclic shift of binary words

—++ [0 |[-+++]0O
—+++- | 0 || +++ |0
= | 1| 44+ | 0
Ft—t+ | O]+ | 1
=+ | 0| ++-+ | 0

Table: Cyclic shift of sequence of a (-1) and b (+1). The Boolean statistic output

1 if all initial segments add up to be positive. The average of this statistic is Pt
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Homomesy on polynomials with group action

We may define a more general form of homomesy where f takes values in
a polynomial ring over a field of characteristic zero, and consider orbits of
a group action instead of a single map 7.
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Homomesy on polynomials with group action

We may define a more general form of homomesy where f takes values in
a polynomial ring over a field of characteristic zero, and consider orbits of
a group action instead of a single map 7.

Then, if we take S to be S,(A) with S, acting on the nonzero parts, and f

to be the statistic mpasgp, our theorem shows that (S,(\), Sq, Tpasep)
exhibits homomesy in this more general sense.
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Homomesy on polynomials with group action

We may define a more general form of homomesy where f takes values in
a polynomial ring over a field of characteristic zero, and consider orbits of
a group action instead of a single map 7.

Then, if we take S to be S,(A) with S, acting on the nonzero parts, and f
to be the statistic mpasgp, our theorem shows that (S,(\), Sq, Tpasep)

exhibits homomesy in this more general sense.

If we take S to be the state space 5’7 with S, acting on the sites, then
(T>9, S,, moasep) also exhibits homomesy in this more general sense.
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colored Boolean process

(110,(1,1)) «—— (101,(1,1)) e (011,(1,1))

PN 4 4

021 4 4 4
I (110,(2,1)) «—— (101,(2,1)) e (011,(2,1))
012

(110,(2.2)) ——— (101,(2:2)) —— (011,(22))

\/
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The colored Boolean process

Definition (J.)

The colored Boolean process is a Markov chain on
QP9 = {(w, N)|w € Sp(190"7), A1 < p, parts™(X) = q}

with transition probabilities: m:

(wy gt ) =20y (wy o i, 14 ) (>l
o~ N~
m; VVIi—I
m;u
(wpuimi_) 30 L (w, il ) [<p
o~ —
m; m; -
4
3n
(ool.., ) — L.lo., X)
s
(o) =2 (o, N)

We denote the unnormalized steady state probabilities of Q5 by 7cgp.

Yuhan Jiang (Harvard) The doubly asymmetric simple exclusion proc
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TN

(110,(1,1)) e (101,(1,1)) e (011,

(110,(2,1)) e~ (101,(2,1)) «—— (011,

(1,1))

N

3

(2,1))

N

(110:(2,2)) - (101:(2,2)) - (011:

\/

3

(2,2))

Figure: The state diagram of Q§’2. For n =3, p = g = 2, we have binary words

{110, 101,0112} and partitions {(1,1),(2,1),(2,2)}. The product of these two

sets make Q3.

Yuhan Jiang (Harvard)
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Lumping

Definition (Kemeny, 1976)

Let {X:} be a Markov chain on state space Qx with transition matrix P,
and let f : Qx — Qy be a surjective map.

Yuhan Jiang (Harvard) The doubly asymmetric simple exclusion proc
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Lumping

Definition (Kemeny, 1976)

Let {X:} be a Markov chain on state space Qx with transition matrix P,
and let f : Qx — Qy be a surjective map. Suppose there is an
|Qy| x |Qy| matrix Q such that for all yo,y1 € Qy, if f(x0) = yo, then

> Plxo,x) = Qyo. ).

x:f(x)=y1
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Let {X:} be a Markov chain on state space Qx with transition matrix P,
and let f : Qx — Qy be a surjective map. Suppose there is an
|Qy| x |Qy| matrix Q such that for all yo,y1 € Qy, if f(x0) = yo, then

> Plxo,x) = Qyo. ).

x:f(x)=»1

Then {f(X;)} is a Markov chain on Qy with transition matrix Q.
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Lumping

Definition (Kemeny, 1976)

Let {X:} be a Markov chain on state space Qx with transition matrix P,
and let f : Qx — Qy be a surjective map. Suppose there is an
|Qy| x |Qy| matrix Q such that for all yo,y1 € Qy, if f(x0) = yo, then

> Plxo,x) = Qyo. ).

x:f(x)=»1

Then {f(X;)} is a Markov chain on Qy with transition matrix Q. We say
that {f(X:)} is a lumping of {X;} and {X:} is a lift of {f(X};)}.
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101

(110,(1,1)) e—— (101,(1,1)) «—— (011,(1,1))

210

I (110,(2,1)) e—— (101,(2,1)) «—— (011,(2,1))
120

(110,(2,2)) e (101,(2,2)) —— (011,(2,2))

202
Fix (wo, Ao) and (w1, A\1). For any ug € 57°(Xo), the quantity

Y. Pluo.n)

prf (n)€Sy™ (M)

is independent of the choice of 119, and nonzero only in 4 cases.

Yuhan Jiang (Harvard) The doubly asymmetric simple exclusion proc:
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DASEP lumps to the colored Boolean process

The projection map f : Th'? — QP9 sending each € SY () to (w, ) is a
lumping of DASEP(n, p, q) onto the colored Boolean process Q7.

(110,(1,1)) e—— (101,(1,1)) e—— (011,(1,1))

(110,(2,1)) e (101,(2,1)) ——— (011,(2,1))

(110,(2,2)) —— (101,(2,2)) ——— (011,(2,2))
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The DASEP lumps to the colored Boolean process

Proposition (Kemeny, 1976)

Suppose p is a stationary distribution for {X;}, and let = be the measure
on Qy defined by m(y) = >_,.f(x)=y P(x). Then m is a stationary
distribution for {f(X:)}.
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The DASEP lumps to the colored Boolean process
Proposition (Kemeny, 1976)

Suppose p is a stationary distribution for {X;}, and let = be the measure
on Qy defined by m(y) = >_,.f(x)=y P(x). Then m is a stationary
distribution for {f(X:)}.

Corollary (J.)

The steady state probabilities of the colored Boolean process and the
steady state probabilities of the DASEP are related as follows:

mep(w, A) o< > mpasep(u
uESW(/\)
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The stationary distribution of the colored Boolean process

Theorem (J.)

Consider the colored Boolean process Q9.

@ The steady state probabilities of all binary words are equal, i.e., for
any w,w' with q ones and (n — q) zeros,

WCBP(W, <1q0n—q>) = WCBP(W,, <1q0n—q>).

Yuhan Jiang (Harvard) The doubly asymmetric simple exclusion proc 23 /36



The stationary distribution of the colored Boolean process

Theorem (J.)

Consider the colored Boolean process Q9.

@ The steady state probabilities of all binary words are equal, i.e., for
any w,w' with q ones and (n — q) zeros,

WCBP(W, <1q0n—q>) = WCBP(W,, <1q0n—q>).

@ For an arbitrary state (w, \), we have

Teap(w, A) = ulAl—q< >WCBP(W, (19079Y).

my,...,Mmp
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1 /—\
(110,(1,1)) «— (101,(1,1)) «— (011,(1,1))

A A A

4

(110:(272)) — (101:(’272)) — (011:(2,2))

‘\—/

Figure: The unnormalized steady state probabilities of Q§’2. The steady state
probability of (110, (2,1)) is the same as that of (101, (2,1)) and (011, (2, 1)),
which is u2+1’2(121) = 2u times the steady state probability of (110, (1,1)).
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A further lumping

(110,(1,1)) «—— (101,(1,1)) «——— (011,(1,1)) H

2u [1

R
’/‘\"\ l

(110:(2,1)) —— (101,(2,1)) —— (011,(2,1)) ‘

N 'S 'S

(110:(’2,2)) — (101,\(’2,2)) — (011,\(’2,2))

\_/
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The reverse lexicographic order is a partial order on partitions such that
v < A if either v = X or for some J,

Vi =M ... Vi_1 = /\j—l v < )\j.
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The reverse lexicographic order is a partial order on partitions such that
v < A if either v = X or for some J,

Vi =M ... Vi_1 = /\j—l v < )\j.

(1,1,1) < (2,1,1) < (2,2,1) < (2,2,2)
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The reverse lexicographic order is a partial order on partitions such that
v < A if either v = X or for some J,

Vi =M ... Vi_1 = /\j—l v < )\j.

(1,1,1) < (2,1,1) < (2,2,1) < (2,2,2)

|
@< < [ < [
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@ Let A\, v be partitions, and let m;(v) denote the number of parts of v
equal to J.
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@ Let A\, v be partitions, and let m;(v) denote the number of parts of v

equal to J.
o We say that A covers v at i if there exists a unique j such that
Aj =vj+1=1iand for all k # j we have A\ = vy, written A >; v.

Yuhan Jiang (Harvard) The doubly asymmetric simple exclusion proc: 27 /36



@ Let A\, v be partitions, and let m;(v) denote the number of parts of v
equal to J.

o We say that A covers v at i if there exists a unique j such that
Aj =vj+1=1iand for all k # j we have A\ = vy, written A >; v.

@ We say that v is covered by A at i if there exists a unique j such that
vj = Aj —1=1iand for all k # j we have v = A\, written v <; .
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@ Let A\, v be partitions, and let m;(v) denote the number of parts of v
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@ Let A\, v be partitions, and let m;(v) denote the number of parts of v
equal to J.

o We say that A covers v at i if there exists a unique j such that
Aj =vj+1=1iand for all k # j we have A\ = vy, written A >; v.

@ We say that v is covered by A at i if there exists a unique j such that
vj = Aj —1=1iand for all k # j we have v = A\, written v <; .

@ In both cases, we have m;(v) = m;(A) + 1

(1,1,1) <1 (2,1,1), (3,2,2) 2 (3,2,1), (3,2,2) >3 (2,2,2)
The partition (2,2,1,0,0) covers (2,1,1,0,0) at 2, and the latter is
covered by the former at 1.
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The restricted random growth model

Definition (J.)

Define the restricted random growth model on
XP9={\: A\ < p,partst(\) = q}

which includes all partitions that fit inside a g x p rectangle but do not fit
inside a shorter rectangle, with transition probabilities d,E")?

@ Let m;(v) denote the number of parts of v equal to i. Transition

probabilities d,E"/\) are:

o If v <; A, then () = ™
o If v >; A, then d@f mi(v)

v

o In all other cases where v # A, d'} =0and d{} =1-Y,.,, d'")
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The restricted random growth model

Definition (J.)

Define the restricted random growth model on
XP9={\: A\ < p,partst(\) = q}

which includes all partitions that fit inside a g x p rectangle but do not fit
inside a shorter rectangle, with transition probabilities d,E")?
@ Let m;(v) denote the number of parts of v equal to i. Transition

probabilities d,E"/\) are:

o If v <; A, then () = ™
o If v >; A, then dy;f mi(v)

o In all other cases where v # A, d'} =0and d{} =1-Y,.,, d'")

We denote the unnormalized stationary distribution of x”9 by nrrc.
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The doubly ASEP (DASEP)

2UJ’HT 1 % N

AT St

Figure: In this Markov chain, boxes are randomly
Figure: The state diagram of the added or removed from the right of any random
restricted random growth model row. It lumps to the restricted random growth
on x%2. model by rearranging parts in weakly decreasing
order.
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CBP lumps to the restricted random growth model

Theorem (J.)

The projection map on state spaces g : Q7 — xP'9 sending (w, \) to A
(forgetting the positions of 0's) is a lumping of the colored Boolean
process Qp'9 to the restricted random growth model xP9.
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CBP lumps to the restricted random growth model

The projection map on state spaces g : Q7 — xP'9 sending (w, \) to A
(forgetting the positions of 0's) is a lumping of the colored Boolean
process Qp'9 to the restricted random growth model xP9.

Corollary (J.)

The unnormalized steady state probabilities of the restricted random
growth model and the steady state probabilities of the colored Boolean
process are related as follows:

WRRg()\) X Z WCBP(W,)\).
wES,(1907-9)
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Stationarity of the restricted random growth model

Theorem (J.)

For DASEP(n, p, q) and two partitions A\, p with \y < p,u1 < p and
partst(\) = parts™ (1) = q, we have

TRRG(A) Zwesn(lqon—Q) mcep(w, A)
TRRG (1) ZWGS,,(NO"—‘?) mcap(w; 1)
)
)

_ D,y MAsEP(Y) _ [Sy(A)]u
- Sa()]uli”

>_ves,(u) ToAseP(V
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A close study of p=qg =2

o If there were only one species of particle, i.e. p =1, the stationary
distribution of DASEP(n, 1, q) is uniform.
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A close study of p=qg =2

o If there were only one species of particle, i.e. p =1, the stationary
distribution of DASEP(n, 1, q) is uniform.

@ If there were only one particle, i.e., g = 1, then the stationary
distribution of DASEP(n, p, 1) are given by powers of u, not involving
t due to cyclic symmetry.
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A close study of p=qg =2

o If there were only one species of particle, i.e. p =1, the stationary
distribution of DASEP(n, 1, q) is uniform.

@ If there were only one particle, i.e., g = 1, then the stationary
distribution of DASEP(n, p, 1) are given by powers of u, not involving
t due to cyclic symmetry.

@ Therefore we study the infinite family p = g = 2.
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The stationary distribution of DASEP(n,2,2)

The stationary distributions of DASEP(n, 2,2) are described by recurrence
relations and differentiate the parity of n.
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The stationary distribution of DASEP(n,2,2)

The stationary distributions of DASEP(n, 2,2) are described by recurrence
relations and differentiate the parity of n.

Let (ak)k>0 and (bk)k>—1 be polynomial sequences in u, t satisfying the
recurrence relation

ax = (U + 2t + 3)ak_1 — (t + 1)2ak_2
b = (u+ 2t +3)be_1 — (t +1)%by_o.

with initial conditions b_; = 0,a0 = bp = 1,a1 = u+ 3t + 4.
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The stationary distribution of DASEP(n,2,2)

The stationary distributions of DASEP(n, 2,2) are described by recurrence
relations and differentiate the parity of n.

Let (ak)k>0 and (bk)k>—1 be polynomial sequences in u, t satisfying the
recurrence relation

ax = (U + 2t + 3)ak_1 — (t + 1)2ak_2
b = (u+ 2t +3)be_1 — (t +1)%by_o.

with initial conditions b_; = 0,a0 = bp = 1,a1 = u+ 3t + 4.

If we set u =t =1, the polynomial sequence ay specializes to trinomial
transform of Lucas number 8, 44, 232, 1216 ... and and by specializes to

6, 32, 168, 880 ... which is the binomial transform of the denominators of
continued fraction convergents to /5.

Yuhan Jiang (Harvard) The doubly asymmetric simple exclusion proc

33/36



Fun facts about the two sequences

Consider matchings (subset of disjoint edges) of the cycle graph Cyxy1 or

line graph Lyk41 with odd number of vertices. Assign each matching M a
weight of (t + 1)IMl(y 4 1)k=IMI.

t+1 t+1 t+1 u+1

t+1 t+1

u—+1
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Fun facts about the two sequences

Consider matchings (subset of disjoint edges) of the cycle graph Cyxy1 or
line graph Lyk41 with odd number of vertices. Assign each matching M a
weight of (t + 1)/M(u 4 1)%IMI. Then a is the sum of weights over all

matchings of a cycle, and by is that of the line. This can be seen via
induction.

AVAVAVA

t+1 t+1
Figure: a; = u+3t+4

t+1 t+1 u+1
Figure: by = u+2t+3
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The stationary distribution of DASEP(n,2,2)

The unnormalized steady state probabilities of the infinite family
DASEP(n,2,2):

When n =2k + 1 is odd, for 0 < m < k,

% Tpasep (1)

S, ((1 1,0,. ,0)) EP
0...010™20...0 | vax T a(t —1)(t +1)"ax ms
0...020M10...0 | uay — u(t — 1)(t + 1)™ak_pm_1
sn((2,2,0,...,0)) u?ay

When n =2k + 2 is even, for 0 < m < k,

p mpasep (1)
S.((1,1,0,...,0)) by
0...010M20...0 | uby + u(t —1)(t 4+ 1)"byx_m—1
0...020m10...0 | uby — U(t— 1)(t+1)mbk,m,1
S$.((2,2,0,...,0)) u?by
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Thank you!

REALLY WERE  AHH, 50

BOTH JUST YOURE A
CATEGORIZATION  META- LUMPER.
PEDANTS

R ]
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