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Abstract. We prove a monoidal equivalence between spectral and automorphic realizations of the universal
affine Hecke category, thereby proving the tamely ramified local Betti geometric Langlands correspondence,

as conjectured by Ben-Zvi–Nadler [BZN07, BZN18]. Specializing to the case of unipotent monodromy, this

provides another argument for a fundamental theorem of Bezrukavnikov [B16].
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1. Introduction and statement of results

1.1. Introduction.

1.1.1. In this paper we establish the tame local Betti geometric Langlands correspondence, confirming a
conjecture of Ben-Zvi–Nadler [BZN07, BZN18]. In the remainder of this subsection, we recall some context;
the reader may skip it and proceed directly to its sequel for a precise formulation of our results, particularly
Theorem 1.2.5.

1.1.2. Let G be a connected reductive group and X a complex algebraic curve, not necessarily projective.
To each of the three standard sheaf theories on X, namely

(i) sheaves of complex vector spaces in the analytic topology,

(ii) algebraic D-modules, and

(iii) ℓ-adic sheaves,

one has an associated groupoid of tamely ramified G-connections on X. For example, if X is projective,
these are simply the groupoids of symmetric monoidal functors from Rep(G) to the corresponding category
of sheaves on X.

1.1.3. These three groupoids are naturally the complex points of derived algebraic stacks, commonly called
the moduli spaces of (i) Betti, (ii) de Rham, and (iii) restricted variation G-connections on X with tame
ramification, respectively. While the analytifications of the moduli spaces (i) and (ii) agree, by the Riemann–
Hilbert correspondence, and the moduli space (iii) may be identified with a certain formal substack of both (i)
and (ii), the algebraic structures of all three are markedly different, and to each one associates a corresponding
version of the geometric Langlands correspondence.
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1.1.4. Let us specialize to a cylinder C, i.e., a genus zero curve with two points removed. In this case, gluing
of cylinders endows the category of sheaves on the moduli spaces of tame local systems with a monoidal
structure, and this naturally acts on sheaves on tame moduli spaces for arbitrary X, i.e., stores the tame
Hecke operators. The arising 2-category of modules for this monoidal category is the subject of the tame
local geometric Langlands correspondence.

1.1.5. If we only consider local systems on C with unipotent monodromy around the two punctures, the
Betti, de Rham, and restricted variation moduli spaces are canonically isomorphic, even before analytifica-
tion, and local geometric Langlands in this case was essentially proven by Bezrukavnikov in the celebrated
work [B16].

1.1.6. By contrast, if we allow the monodromy to vary around the punctures, we get three genuinely different
moduli spaces, and studying the resulting categories of sheaves introduces new complications not present in
the case of a fixed semisimplified monodromy, particularly in the Betti and de Rham cases.

1.1.7. As far as we know, for non-abelian G, no instances of geometric Langlands, local or global, in such
families have been proven in the literature. The contribution of this paper is to settle the local case for tame
Betti families.

1.2. Statement of results.

1.2.1. To describe our results, we need some standard notation. Let k denote a coefficient field of charac-
teristic zero.

1.2.2. Fix a split pinned connected reductive group G over k. Write B ⊂ G for the corresponding Borel,
and denote the multiplicative Grothendieck–Springer resolution by

G̃ ≃ G×B B→ G.

On the spectral side, we consider the ∞-category of ind-coherent sheaves on the Steinberg stack

IndCohG(G̃×G G̃) ≃ IndCoh(B/B×G/G B/B),

which is naturally monoidal under convolution.

1.2.3. Denote the Langlands dual pinned complex reductive group to G by G, with corresponding maximal
unipotent subgroup N ⊂ G. Denote the complex arc and loop groups of G by

L+G := G(C[[t]]) ↪→ LG ≃ G(C((t))),

and denote by I̊ the prounipotent radical of the Iwahori subgroup, i.e., I̊ is the preimage of N under the
evaluation map L+G→ G. We may form the associated universal monodromic Hecke stack I̊\LG/I̊.

On the automorphic side, we consider the ∞-category of Betti sheaves of k-vector spaces with nilpotent
singular support on the Hecke stack

Shvnilp(I̊\LG/I̊),

which is naturally monoidal under convolution.

1.2.4. With this notation in hand, we may state the following.

Theorem 1.2.5. There is an equivalence of monoidal ∞-categories

IndCohG(G̃×G G̃) ≃ Shvnilp(I̊\LG/I̊).

We again emphasize that if we pass on both sides to the subcategories with unipotent monodromy, this
recovers a fundamental theorem of Bezrukavnikov [B16].
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Remark 1.2.6. Let us write 2-IndCohnilp(G/G) for the 2-category of ind-coherent sheaves of categories over

G/G with nilpotent singular support, and Shvnilp(I̊\LG/I̊) -mod for the 2-category of k-linear stable, pre-

sentable categories equipped with an action of Shvnilp(I̊\LG/I̊) -mod. Then an immediate consequence of
Theorem 1.2.5 is that one has an equivalence of (∞, 2)-categories

2-IndCohnilp(G/G) ≃ Shvnilp(I̊\LG/I̊) -mod .

However, as we are unaware of a written reference for the theory of 2-IndCoh with singular supports, as

developed by Arinkin, we omit a formal deduction; briefly, it follows from the fact that G̃/G → G/G is a
proper map between smooth stacks, surjective on geometric points, and the codirections in G/G orthogonal

to the tangent complex of G̃/G are precisely the nilpotent codirections.

1.2.7. Theorem 1.2.5 and Remark 1.2.6 establish tame local Betti geometric Langlands, as conjectured
by Ben-Zvi–Nadler. Namely, the statement of Theorem 1.2.5 appears in their work [BZN07], and recurs
implicitly in their work with Francis [BZFN12]. It was further discussed in their work [BZN18] introducing
the Betti Langlands correspondence. The precise formulation proven in the present text appears in the
recent very interesting work of Nadler–Li–Yun [LNY24] on functions on commuting stacks, where it is used
as a formal input in their analysis.

1.3. Idea of the proof.

1.3.1. At a high level, we essentially follow the beautiful strategy of proof due to Kazhdan–Lusztig [KL87]
at the function-theoretic level and Arkhipov–Bezrukavnikov at the sheaf-theoretic level for unipotent mon-
odromy [AB09, B16]. However, in terms of the details, using some tools from higher algebra, we are able
to give a proof which perhaps comes closer to directly lifting the function-theoretic argument of Kazhdan–
Lusztig to the sheaf-theoretic level than seems possible to do at the triangulated level.

We should mention that there are many further variants, known and expected, of Theorem 1.2.5, e.g. in
the de Rham setting, with modular coefficients [BRR20, BR22, BR24], or in mixed characteristic [AGLR22,
ALWY23]. We expect that the present approach can be useful in those settings as well.

In the remainder of this subsection, let us describe the ingredients of the argument, old and new, in slightly
more detail.

1.3.2. As in the work of Kazhdan–Lusztig and Arkhipov–Bezrukavnikov, we prove Theorem 1.2.5 by match-
ing the tautological module on the spectral side

QCohG(G̃) ⟲ IndCohG(G̃×G G̃)

with the appropriately defined Iwahori–Whittaker module on the automorphic side

Shvnilp(I̊ , χ\LG/I̊) ⟲ Shvnilp(I̊\LG/I̊).

Here, the underlying equivalence of categories

QCohG(G̃) ≃ Shvnilp(I̊ , χ\LG/I̊)

was established in our previous article [DT24]. We recall that, again in broad strokes, this followed the cue
of Kazhdan–Lusztig and Arkhipov–Bezrukavnikov, where the latter established the unipotent analogue

QCohB(Ñ) ≃ Shv(I̊ , χ\LG/I),

where Ñ denotes the Springer resolution of the unipotent cone, and I ⊂ L+G the Iwahori subgroup.

1.3.3. In the setting of Kazhdan–Lusztig, i.e., for affine Hecke algebras rather than affine Hecke categories,
the underlying vector space of the modules on the spectral and automorphic sides are both essentially the
Grothendieck group of Rep(T), and the action of both algebras on it are faithful. Therefore, one has to
match the action of generators, and the isomorphism of algebras follows. I.e, one realizes both algebras at
the ‘same’ set of operators acting on the ‘same’ vector space.
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1.3.4. In formulating a version of this strategy in the categorical setting, Bezrukavnikov deploys some fun-
damental observations, notably an intrinsic characterization of bounded coherent sheaves as an enlargement
of perfect complexes. This in particular has been highly influential on many subsequent works in this area,
including the argument given below.

Even with these observations in hand, however, it seems difficult to straightforwardly adapt the original
argument of Kazhdan–Lusztig when working at the level of triangulated categories. To circumvent this,
Bezrukavnikov uses many further interesting maneuvers; we highlight in particular his use of the pointwise
tensor product, rather than convolution, monoidal structure on the spectral side to set up the underlying
equivalence of categories.

As he writes in [B16],

In this text we follow the original plan conceived more than a decade ago and treat the
issues of homological algebra by ad hoc methods, using explicit DG models for triangulated
categories of constructible sheaves based on generalized tilting sheaves. While the properties
of tilting sheaves established in the course of the argument are (in the author’s opinion) of
an independent interest, it is likely that recent advances in homotopy algebra can be used
to develop an alternative approach.

1.3.5. Below we use exactly such advances in homotopy algebra to directly obtain an isomorphism of
monoidal categories from matching the modules. The basic idea of the present paper is the following.

Näıvely, one would like to approximately say that the action, say for definiteness on the spectral side,
yields a fully faithful monoidal embedding

(1) IndCohG(G̃×G G̃)→ End(QCohG(G̃)).

If this held, as well as its automorphic analogue, then one could finish by matching essential images, as in
the work of Kazhdan–Lusztig. I.e., one would have realized both monoidal categories as the ‘same’ category
of endofunctors acting on the ‘same’ category.

This does not quite work, as, up to renormalization issues, the map (1) identifies with the pushforward of
quasicoherent sheaves along the map

(G̃×G G̃)/G→ G̃/G× G̃/G,

and in particular is not fully faithful, already for a torus. To address this, we note that we instead have

QCohG(G̃×G G̃) ≃ EndQCohG(G)
(QCohG(G̃)),

i.e., we need to consider the commuting action of QCohG(G) on QCohG(G̃) as well.

For this reason, in our previous article [DT24], we provided a monoidal equivalence between QCohG(G)

and an appropriately defined bi-Whittaker category Shvnilp(I̊ , χ\GF /I̊, χ); we note that in the unipotent
case analogous results were obtained in [B09], [CD23]. With this in hand, the above näıve argument can be
adapted to prove Theorem 1.2.5. Namely, the commuting actions

Shvnilp(I̊ , χ\LG/I̊, χ) ⟳ Shvnilp(I̊ , χ\LG/I̊) ⟲ Shvnilp(I̊\LG/I̊)

then directly give rise to a monoidal functor

(2) Shvnilp(I̊\LG/I̊)→ QCohG(G̃×G G̃),

which up to renormalization issues is the sought-for equivalence. That is, we realize the two sides of Theorem
1.2.5 as the ‘same’ category of equivariant endofunctors of the ‘same’ category, which is the promised lift of
the strategy of Kazhdan–Lusztig.
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1.3.6. As far as we are aware, the proof given in this paper is new, even in the unipotent case. However,
we would like to mention some antecedents.

First, we should note our approach to constructing the functor was influenced by unpublished strategies
of Ben-Zvi–Nadler, Gaitsgory–Lurie, and Arinkin–Bezrukavnikov for the spherical case, which reprove the
derived Satake equivalence of Bezrukavnikov–Finkelberg [BF07] via acting on the spherical Whittaker cate-
gory; we highlight the approach of Gaitsgory–Lurie was recently successfully realized by Campbell–Raskin
[CR23].

Second, after constructing the functor, one must handle the arising renormalization issues to obtain an
equivalence. Compared to the analysis found in [B16], we have opted to give ‘soft analysis’ proofs throughout,
e.g. showing the t-boundedness of certain functors without explicitly bounding the amplitude. Moreover,
the proofs of the t-boundedness essentially reduce to the fact that Wakimoto sheaves, which correspond
to the lattice in the affine Weyl group, lie in the heart of both the automorphic and spectral t-structures,
and the remaining finite Weyl group is, true to its name, finite. In particular, Lusztig’s a-function does
not appear in our analysis below. With that said, we should emphasize that our approach nonetheless was
greatly influenced by the arguments in [B16], particularly the striking Lemma 38.

1.4. Acknowledgments. It is a pleasure to thank Pramod Achar, David Ben-Zvi, Jens Eberhardt, Arnaud
Eteve, Joakim Færgeman, Dennis Gaitsgory, Yau Wing Li, Ivan Losev, David Nadler, Sam Raskin, Simon
Riche, David Yang, Zhiwei Yun, and Xinwen Zhu for useful correspondence and discussions. We especially
thank Harrison Chen, with whom many of the basic ideas of the present paper were jointly formulated, and
Roman Bezrukavnikov, for several conversations which greatly influenced our understanding of this subject.
G.D. was supported by an NSF Postdoctoral Fellowship under grant No. 2103387. J.T. was partially
supported by NSF grant DMS-1646385.

2. Preliminaries

In this section, we recall some basic properties of the two sides of the equivalence, as well as the main
results of [DT24]. These are then applied in Section 3 to prove Theorem 1.2.5.

2.1. Generalities.

2.1.1. By a category C, we will by default mean a k-linear stable, presentable∞-category, and by a functor
we will mean one commuting with arbitrary colimits. Given two objects c and d of a category C, we will
denote by HomC(c, d) the corresponding complex of k-vector spaces.

In order to discuss compact objects or variants thereof, by a non-cocomplete category we mean a k-linear
stable ∞-category, and by functors between such we mean those commuting with finite colimits.

As a basic example, for a k-algebra A by A -mod we mean the standard ∞-category whose underlying
homotopy category is the unbounded derived category of all A-modules, not necessarily finitely generated.

The Lurie tensor product endows the totality of categories with the structure of a symmetric monoidal
∞-category with unit Vect := k -mod. We denote the underlying binary product of two categories C and D

by C⊗D, and given objects c of C and d of D, we denote the corresponding external tensor product object
of C⊗D by c⊠ d. Below, when we speak of monoidal categories, their modules, equivariant maps, etc., it is
with respect to this structure.

2.1.2. Given a monoidal category A, let us denote the binary product on its objects by

− ⋆− : A⊗A→ A, a⊠ b 7→ a ⋆ b.

We denote by Arev the monoidal category obtained by passing to the reversed multiplication; in particular
as categories we have id : A ≃ Arev.

If we denote the monoidal unit of M by 1, we recall that an object a of A is left dualizable if there exists
another object a∨ and maps 1→ a ⋆ a∨ and a∨ ⋆ a→ 1 satisfying the usual identities.
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2.1.3. For a category C, we denote by Cc ⊂ C the full subcategory of compact objects.

2.1.4. For a category C equipped with a t-structure, and an integer n, let us write C⩽n and C⩾n for the
corresponding full subcategories of C, and τ⩽n and τ⩾n for the corresponding truncation functors, so that
we have a distinguished triangle of endofunctors

τ<n → id→ τ⩾n +1−−→,

where τ<n := τ⩽(n−1). It will be very convenient to also adopt the following nonstandard shorthand: for an
object c of C, we will write c ⩽ n or c ⩾ n if c belongs to C⩽n or C⩾n, respectively.

Given a category C equipped with a t-structure, we may consider in particular the full subcategory of
infinitely connective objects

C⩽−∞ := ∩
n
C⩽n.

2.1.5. Given a functor F : C → D between categories equipped with t-structures, and integers a, b ∈ Z,
recall that F is said to have amplitude at most [a, b] if F (C⩽0) ⊂ D⩽b and F (C⩾0) ⊂ D⩾a.

2.2. Spectral preliminaries.

2.2.1. We now collect some basic ingredients on the spectral side. Recall the tautological line bundles on

G̃, i.e., the monoidal functor

Rep(T)→ Rep(B)→ QCohG(G̃), kλ 7→ O(λ).

We follow the convention that the bundles indexed with strictly dominant weights, i.e., O(λ), for λ ∈ Λ++,

are relatively ample for the projection G̃ → G. Tensoring by these bundles in turn gives rise to a monoidal
functor

Rep(T)→ Rep(B)→ QCohG(G̃)→ EndQCohG(G)
(QCohG(G̃)) ≃ QCohG(G̃×G G̃), λ 7→ ∆∗(O(λ)),

where ∆ : G̃ → G̃ ×G G̃ denotes the diagonal embedding. Here, we recall the final equivalence is a case of
the basic assertion, due to Ben-Zvi–Francis–Nadler [BZFN10], that for a map of perfect stacks X → Y , if
we view QCoh(X) as a QCoh(Y ) module, we have a canonical equivalence

EndQCoh(Y )(QCoh(X)) ≃ QCoh(X ×Y X).

2.2.2. Consider the tautological line bundles on G̃×G G̃, i.e., the (non-monoidal) functor

Rep(T× T)→ QCohG(G̃×G G̃), kλ ⊠ kµ 7→ O(λ, µ) := O(λ)⊠ O(µ).

Note that, for any object E of QCohG(G̃×G G̃), we have a canonical isomorphism

∆∗(O(λ)) ⋆ E ⋆∆∗(O(µ)) ≃ E⊗ O(λ, µ) =: E(λ, µ).

Similarly, we have the action of tensoring with tautological vector bundles, i.e., the monoidal functor

Rep(G)→ Rep(B)→ QCohG(G̃×G G̃), V 7→ V ⊗∆∗(O).

2.2.3. If we write σ : G̃×G G̃ ≃ G̃×G G̃ for the involution swapping the two factors of the fiber product, we
recall that the associated involution of its category of quasicoherent sheaves underlies a monoidal equivalence

(3) σ∗ : QCohG(G̃×G G̃) ≃ QCohG(G̃×G G̃)rev.

2.2.4. Let us denote the full subcategories of perfect and bounded coherent complexes by

PerfG(G̃×G G̃) ↪→ CohG(G̃×G G̃) ↪→ QCohG(G̃×G G̃).

We recall that QCohG(G̃ ×G G̃) is compactly generated by PerfG(G̃ ×G G̃). Moreover, the t-structure on

QCohG(G̃×G G̃) may be characterized by

ξ ⩾ 0 if and only if Hom(O(λ, µ), ξ) ⩾ 0, for all λ, µ ∈ Λ.
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2.2.5. Let us denote the functor of Serre duality by

DS : CohG(G̃×G G̃) ≃ CohG(G̃×G G̃)op.

Recall this functor has amplitude [0,dimG].

We recall that CohG(G̃×G G̃) is exactly the (left) dualizable objects of QCohG(G̃×G G̃), and moreover one

has explicitly for any E in CohG(G̃×G G̃) a canonical isomorphism

E∨ ≃ σ∗ ◦ DS(E).

Moreover, as (G̃×G G̃)/G is Calabi-Yau, i.e., O(G̃×GG̃)/G
≃ ω(G̃×GG̃)/G

, it follows that duality preserves the full

subcategory of perfect complexes.

2.3. Automorphic preliminaries I: the perverse t-structure.

2.3.1. Let us consider the category of Betti sheaves with nilpotent singular support on I̊\LG/I̊, which we
will denote by

H := Shvnilp(I̊\LG/I̊).

We will presently recall its definition and some of its basic properties.

2.3.2. Let us denote the abstract Cartan by T ≃ I/I̊, and its cocharacter lattice by Λ. Let us write
R := k[Λ] for the group algebra of the latter, i.e., the algebra of regular functions on T. Let us denote the
submonoids of antidominant and dominant weights by Λ− ⊂ Λ and Λ+ ⊂ Λ, respectively. Let Λ−− ⊂ Λ−

and Λ++ ⊂ Λ+ denote the strictly antidominant and strictly dominant weights, respectively.

Denote by Wf the finite Weyl group, and by W the (extended) affine Weyl group, so that W ≃ Wf ⋉ Λ.
Let us write ℓ : W → Z⩾0 for the standard length function on the affine Weyl group, and ⩽ for the Bruhat
order. We recall that for any w ∈W , the set {y : y ⩽ w} is finite.

2.3.3. Recall that LG is stratified by the double cosets IwI, for w ∈W . Explicitly, each IwI/I̊ is a smooth
complex manifold of dimension dw := ℓ(w) + dimT , hence the same is true of any universal cover

πw : ĨwI/I̊ → IwI/I̊.

Moreover, the object πw.!(k[dw]) is a compact generator of the category of local systems Shvnilp(I̊\IwI/I̊),
and left convolution with it1 yields a t-exact equivalence

Shvnilp(I̊\IwI/I̊) ≃ Shvnilp(I̊\I/I̊) ≃ Shvnilp(T ) ≃ R -mod;

here the final monoidal equivalence is the Mellin transform, cf. Section 2.1 of [BZN18]. That is, Shvnilp(I̊\IwI/I̊)
is a free module of rank one over R -mod, and any choice of universal cover affords a trivialization.

2.3.4. Write jy : IyI/I̊ → LG/I̊ for the inclusion of a stratum, and note its closure iy : Xy → LG/I̊ is an

I̊-stable union of finitely many double cosets, namely IxI/I̊, x ⩽ y. We may consider the associated category

Shvnilp(I̊\Xy/I̊)

of I̊-equivariant Betti sheaves on Xy/I̊ with nilpotent singular support, i.e., sheaves of k-vector spaces

in the analytic topology whose ∗-restriction (or equivalently, !-restriction) to each Shv(I̊\IxI/I̊) lies in

Shvnilp(I̊\IxI/I̊).
We have LG ≃ lim−→Xy, and similarly

(4) H ≃ lim−→ Shvnilp(I̊\Xy/I̊) =: lim−→H⩽y,

where the transition functions in the appearing colimit are given by pushforward along the closed embeddings
Xy → Xz, y ⩽ z. In particular, for any object η of H, we have that

lim−→ iy,! ◦ i!y(η)
∼−→ η.

1Of course, one could work equally well with the right convolution action.
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Moreover, the perverse t-structure is characterized by η ⩾ 0 if and only if each i!y(η) ⩾ 0 for each y ∈ W ,

where we equip Shvnilp(Xy/I̊) with its usual perverse t-structure, cf. Equation (7) below for an equivalent
characterization.

2.3.5. For a fixed stratum, consider the associated functors

(5) jw,! : Shvnilp(I̊\IwI/I̊)→ H and jw,∗ : Shvnilp(I̊\IwI/I̊)→ H.

We may consider a standard object ∆w := jw,! ◦ π!(k[dw]), which is well-defined up to non-unique isomor-
phism, and similarly we have a costandard object ∇w := jw,∗ ◦ π!(k[dw]). More precisely, we have non-
contractible groupoids of standard and costandard objects ∆w,∇w, each canonically equivalent to pt /Λ,

where we think of Λ as the fundamental group of IwI/I̊, and note it is abelian to get the canonical isomor-
phism. Note the vanishing

(6) Hom(∆y,∇w) ≃

{
L, y = w,

0, y ̸= w,

where L is a trivializable R-module of rank one.

2.3.6. The standard objects ∆w, w ∈ W , compactly generate H, and the perverse t-structure on it may
also be characterized by

(7) ξ ∈ H ⩾ 0 if and only if Hom(∆w, ξ) ⩾ 0, for all w ∈W.

As the monoidal unit 1 ≃ ∆e is compact, and each ∆w is invertible with inverse ∇w−1 , it follows straight-
forwardly that the costandard objects are again compact generators. Moreover, we have the following basic
lemma; a proof is given in Section 4.3 of [DT24].

Lemma 2.3.7. The functors (5) are t-exact, and in particular the objects ∆w and ∇w are perverse.

2.3.8. As H is compactly generated by invertible objects, it follows that every compact object of H is
dualizable. If we write inv : LG ≃ LG for the inversion map g 7→ g−1, let us denote the associated
anti-equivalence of Hc by

DV : Hc ≃ Hc,op, ξ 7→ inv∗(ξ
∨);

see also the interesting paper [EE24, Section 5.3] for a less ad hoc construction of the duality.

Note that, by construction DV(∆w) ≃ ∇w and DV(∇w) ≃ ∆w, and for two compact objects ξ, ζ one has
a canonical equivalence

DV(ξ ⋆ ζ) ≃ DV(ξ) ⋆ DV(ζ).

It will be useful in the sequel to have the following estimate.

Lemma 2.3.9. The functor DV has cohomological amplitude [0,dimT ].

Note that, as the perverse t-structure restricts to a bounded t-structure on compact objects, the statement
of the lemma is equivalent to the assertion that if a compact object ξ is moreover perverse, then DV(ξ) has
perverse amplitude at most [0,dimT ].

Proof of Lemma 2.3.9. Let us first consider the full subcategory of objects supported on the minimal stratum

Shvnilp(I̊\I/I̊) ≃ Shvnilp(T ) ≃ R -mod ≃ QCoh(T).

Here, note that the functor of dualizing a compact object, ξ 7→ ξ∨, is given in QCoh(T) by näıve duality of
perfect complexes, i.e., E∨ ≃ Hom(E,OT). As the Mellin transform exchanges pushforward along inversion
on T with pushforward along inversion on T, it follows that DV corresponds to the operation

QCoh(T)c ≃ QCoh(T)c,op, E 7→ inv∗ Hom(E,OT) =: DV(E),

and in particular has cohomological amplitude [0,dimT ].



TAME LOCAL BETTI GEOMETRIC LANGLANDS 9

We claim the lemma now follows for objects !-extended from a single stratum IwI. Indeed, such an object
ξ may be uniquely written as ξ ≃ ∆w ⋆ E, for E ∈ QCoh(T)c. It follows that

DV(ξ) ≃ DV(∆w ⋆ E) ≃ DV(∆w) ⋆ DV(E) ≃ jw,∗(DV(E)),

whence the cohomological estimate holds by previous analysis and the exactness of jw,∗. A similar argument
yields the lemma for objects ∗-extended from a single stratum.

Finally let us address the general case. Let ξ be a compact object of H. We must show that ξ ⩽ 0
implies DV(ξ) ⩽ dimT , and ξ ⩾ 0 implies DV(ξ) ⩾ 0. To see the first claim, note that a connective compact
object admits a finite filtration with successive quotients connective compact objects !-extended from a single
stratum, so the first assertion reduces to a previously shown case. Similarly, a coconnective compact object
admits a finite filtration with successive quotients coconnective compact objects ∗-extended from a single
stratum, so the latter estimate again reduces to a previously shown case. □

2.4. Automorphic preliminaries II: Wakimoto sheaves.

2.4.1. Recall that previously we only defined the (co)standard objects up to non-unique isomorphism, as a
general stratum IwI does not have a canonical choice of basepoint. However, for λ ∈ Λ ⊂ W , the stratum
IλI contains a canonical point associated to our global coordinate t, namely tλ ∈ LG, hence we have a
canonical choice of ∆λ and ∇λ, which we denote by ∆can

λ and ∇can
λ , respectively. Namely ∆can

λ and ∇can
λ

are rigidified by specifying an identification of their !-fibers at tλ with R.

2.4.2. Recall that if we write 2ρ̌ for the sum of the positive roots of G, we have for any λ ∈ Λ that
ℓ(tλ) = |⟨λ, 2ρ̌⟩|. In particular, for λ, µ ∈ Λ+, as tλ · tµ = tλ+µ in LG, and their lengths add, we have a
canonical isomorphism

αλ,µ : ∇can
λ ⋆∇can

µ ≃ ∇can
λ+µ,

which is associative in the evident sense for triples λ, µ, ν ∈ Λ+, and similarly for standard objects ∆can
λ , λ ∈

Λ.

2.4.3. Let us write Rep(T)+ for the full subcategory generated by the objects kλ, λ ∈ Λ+; this is a monoidal
subcategory. The objects ∇can

λ , λ ∈ Λ+ together with the isomorphisms αλ,µ yield a monoidal functor

Rep(T)+ → H, kλ 7→ ∇can
λ ,

which extends by the invertibility of the costandard objects uniquely to a monoidal functor

Rep(T)→ H, kµ 7→Wµ,

the resulting objects Wλ, λ ∈ Λ, are the Wakimoto sheaves. We in particular have canonical isomorphisms

Wλ ≃ ∇can
λ , λ ∈ Λ+, Wλ ⋆ Wµ ≃Wλ+µ, λ, µ ∈ Λ, Wλ ≃ ∆can

λ , λ ∈ Λ−.

2.4.4. It will be important for us to recall that one can attach Wakimoto sheaves to every element of W ,
which is done as follows. Recall that in [LNY24], [IY23], [T23], [DT24], a universal Whittaker right module
for the finite Hecke category was constructed, along with a canonical isomorphism

Shvnilp(N
−, χ\G/N) ≃ R -mod .

Let us denote the underlying binary product of the right module structure by

Shvnilp(N
−, χ\G/N)⊗ Shvnilp(N\G/N)→ Shvnilp(N,χ\G/N), M⊠N 7→M ⋆N.

We also recall that acting on the object R yields an adjunction

AvLχ : Shvnilp(N
−, χ\G/N) ⇆ Shvnilp(N\G/N) : Avχ,

wherein AvLχ is conservative, and identifies the Whittaker category with left comodules for the big tilting

coalgebra object Ξ in Shvnilp(N\G/N). In particular, it carries a unique t-structure for which AvLχ is t-exact;
we refer to this as the perverse t-structure in what follows.
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2.4.5. Having introduced the universal finite Whittaker model, let us recall its affine analogue. The latter
is obtained simply by induction

χH := Shvnilp(I̊
−, χ\GF /I̊) := Shvnilp(N

−, χ\G/N) ⊗
Shvnilp(N\G/N)

Shvnilp(I̊\G/I̊).

In particular, we still have an adjunction

AvLχ : χH ⇄ H : Avχ,

which again identifies the Iwahori–Whittaker category with left comodules for Ξ. Again χH inherits a unique

t-structure for which AvLχ is t-exact, which we refer to as the perverse t-structure.

The corresponding category of bi-Whittaker sheaves is simply defined as its endomorphisms

χHχ := Shvnilp(I̊
−, χ\GF /I̊

−, χ) := EndHrev -mod(χH).

2.5. Recollections from [DT24].

2.5.1. Finally, let us recall the relevant results obtained in [DT24] connecting the spectral and automorphic
sides.

2.5.2. For a monoidal category A, write Z(A) for its center. Recall that Gaitsgory’s nearby cycles con-
struction [G01], together with the monodromy automorphism, gives rise to a monoidal functor

Z : QCohG(G)→ Z(H),

see [DT24, Section 15.4] for the details in the universal monodromic setting. In particular, we have Gaits-
gory’s central sheaves, i.e, the composition

Rep(G)→ QCohG(G)→ Z(H), V 7→ ZV .

2.5.3. The first basic result we need to recall is the following, which is a universal monodromic analogue of
[AB09, AR24].

Theorem 2.5.4. (1) The composite monoidal functor

QCohG(G)→ Z(H)→ H

factors through a monoidal functor F : QCohG(G̃)→ H. Moreover, the obtained monoidal functor

Rep(T)→ Rep(B)→ QCohB(B) ≃ QCohG(G̃)→ H

agrees with the Wakimoto construction. In particular, we have canonical isomorphisms F (O(λ)) ≃
Wλ, for λ ∈ Λ.

(2) The composition QCohG(G̃)
F−→ H

Avχ−−−→ χH is an equivalence of categories.

The second basic result we need to recall is the following, which is a universal monodromic analogue of
[B09], [CD23]. Note that for any right module M for a monoidal category A, we have a tautological monoidal
functor

Z(A)rev → EndA(M).

Theorem 2.5.5. There is a canonical equivalence of monoidal categories QCohG(G) ≃ χHχ, given by the
composition

QCohG(G) ≃ QCohG(G)
rev Z−→ Z(H)rev → χHχ.

3. Proof of Theorem 1.2.5

Having gathered all the necessary ingredients in the previous section, in this section we give the proof of
Theorem 1.2.5.

3.1. Construction of the functor.
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3.1.1. We will begin by producing a monoidal functor from the automorphic side to the spectral side via
the strategy sketched in Section 1.3, and record some of its basic properties which will be useful for later
analysis.

Proposition 3.1.2. There exists a canonical monoidal functor

ι! : H→ QCohG(G̃×G G̃)

Moreover, the composition

QCohG(G̃)
F−→ H

ι!−→ QCohG(G̃×G G̃).

is canonically identified as monoidal functors with the the tautological map ∆∗ : QCohG(G̃)→ QCohG(G̃×GG̃).

Proof. Consider the tautologically commuting actions

χHχ ⟳ χH ⟲ H,

and in particular the arising monoidal functor

(8) H→ EndχHχ(χH)rev.

By Theorems 2.5.4 and 2.5.5, we may rewrite the target of the functor in spectral terms as

End
χHχ

(χH)rev ≃ EndQCohG(G)
(QCohG(G̃))

rev ≃ QCohG(G̃×G G̃)rev.

Postcomposing this with the tautological swap map σ : QCohG(G̃ ×G G̃)rev ≃ QCohG(G̃ ×G G̃), cf. Section
2.2.3, yields the first claim of the proposition. The second is immediate from the construction. □

3.2. Colocalization.

3.2.1. It remains to show that ι! is an equivalence, up to renormalization issues. To this end, we now show
the following.

Proposition 3.2.2. The functor ι! admits a fully faithful left adjoint ι! which is a morphism of H-bimodules.

Moreover ι! sends the structure sheaf of (G̃×G G̃)/G to the big tilting object Ξ, i.e.,

ι!(O(G̃×GG̃)/G
) ≃ Ξ.

Proof. Consider the tautological functor associated to the bimodule χH, i.e.,

(9) χHχ -mod← H -mod : χH ⊗
H
−.

By a general result in Morita theory, due to Ben-Zvi–Gunningham–Orem [BZGO20, Proposition 3.2], it
suffices to see this bimodule is properly dualizable; i.e., that the functor (9) admits a left adjoint, and that
the unit and counit of adjunction admit continuous right adjoints.

If we write Hχ := Shvnilp(I̊\LG/I̊, χ), then by the rigidity of H we have

χH ⊗
H
− ≃ HomH -mod(Hχ,−),

hence the left adjoint to (9) is given by tensoring with the bimodule Hχ. The unit of adjunction

χHχ ≃ χH ⊗
H
Hχ

is an equivalence, so tautologically admits a continuous right adjoint.

It remains to see the counit of adjunction, i.e., the convolution map

Hχ ⊗
χHχ

χH→ H

admits a continuous right adjoint. By the rigidity of χHχ, the insertion functor

Hχ ⊗ χH→ Hχ ⊗
χHχ

χH



12 GURBIR DHILLON AND JEREMY TAYLOR

admits a continuous right adjoint, and in particular the latter tensor product is compactly generated by
insertions of compact objects from Hχ⊗ χH. Therefore, it is enough to see that the natural map Hχ⊗ χH→
H preserves compact objects. However, as this is a map of H-bimodules, it is enough to check that, if we
write δχ for the standard generator of Hχ as an H-module, and similarly for χδ, that the image of δχ⊠ χδ is
compact. But the latter is the big tilting object Ξ in Shvnilp(N\G/N) ↪→ H, and in particular is compact,
as desired.

That left adjointness equips ι! with a datum of strict H-biequivariance follows from the rigidity of H.
Finally, note that, in spectral terms, the insertion

Hχ ⊗ χH→ Hχ ⊗
χHχ

χH

corresponds to ∗-pullback to the fiber product, i.e.,

QCohG(G̃)⊗QCohG(G̃)→ QCohG(G̃×G G̃).

In particular, δχ ⊠ χδ, which corresponds under Theorem 2.5.4 to OG̃/G ⊠ OG̃/G, is sent to O(G̃×GG̃)/G
, as

desired. □

3.3. Left completion.

3.3.1. Having obtained the left adjoint ι!, our next task is to understand the kernel of the map ι!. To state
the answer, we refer to Section 2.1.4 for our notation and conventions for t-structures, and a reminder on
the notion of infinitely connective objects.

In this paper, when we speak of t-structures on our categories of interest, we always mean the perverse
t-structure on the automorphic side, as in Section 2.3, and the usual t-structure on quasicoherent or ind-
coherent sheaves on the spectral side.

Theorem 3.3.2. An object of H lies in the kernel of ι! if and only if it is infinitely connective, i.e.,

ker(ι!) ≃ H⩽−∞.

Proof. We begin with the ‘only if’ implication. For an arbitrary object c of H, consider the tautological
triangle

ι! ◦ ι!(c)→ c→ ξ
+1−−→ .

We must show that, for every c, the object ξ is infinitely connective. As all appearing functors, including the
perverse truncation functors on H, commute with filtered colimits, without loss of generality we may take c
to be a compact object.

We first claim that ι!(c) is bounded coherent, i.e., an object of CohG(G̃×G G̃) ↪→ QCohG(G̃×G G̃). Equiv-

alently, we claim that its image in QCoh(G̃ × G̃) is compact, i.e, perfect. However, this is clear, as the
compact objects of H are generated under extensions by invertible objects with respect to convolution, and

the diagonal of QCoh(G̃× G̃) is perfect.

We may therefore write ι!(c) as a bounded above complex of vector bundles E ≃ ι!(c). In particular, if for

an integer n we write E⩾n for the stupid truncation of E, this is a compact object of QCohG(G̃ ×G G̃), and
we have E ≃ lim−→E⩾n, and whence

ι! ◦ ι!(c) ≃ lim−→ ι!(E
⩾n).

For fixed n, consider the triangle

ι!(E
⩾n)→ c→ ξn

+1−−→ .

Note that, as ι! preserves compactness, ξn is a compact object, which satisfies ι!(ξn) ≃ E/E⩾n, and in
particular ι!(ξn) < n. For this reason, we show the following.

Lemma 3.3.3. There exists an integer N with the following property. For any compact object η of H, if
ι!(η) ⩽ 0, then η ⩽ N , and if ι!(η) ⩾ 0, then η ⩾ −N .
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Note that, assuming the lemma, it follows that ξn < n+N , whence upon passing to the colimit we obtain
ξ ≃ lim−→ ξn is infinitely connective, as desired.

Proof of Lemma 3.3.3. For ease of reading, we will break the proof into steps.

Step 1. Suppose we can find an integer N ′ such that ι!(η) ⩾ 0 implies η ⩾ N ′ for every η ∈ Hc. By

monoidality, ι! intertwines the duality functors on Hc and CohG(G̃×G G̃). We have already seen that these
duality functors are t-bounded. Hence, the existence of an N ′ implies the existence of an N satisfying both
conditions in the statement of the lemma.

Step 2. We first make the preliminary claim that there exists an integer d such that for all y ∈ Wf , the
functors

(10) − ⋆ ι!(∆y)[−d] : QCohG(G̃×G G̃)
∼−→ QCohG(G̃×G G̃)

are left exact. The proof of this claim is given in the remainder of this step, and in Step 3 below we will
show that one may take N ′ = d.

To see the claim, let us reduce to the analogous assertion for the corresponding endofunctor of QCoh(G̃),

as follows. Consider the closed embedding δ : (G̃ ×G G̃)/G → (G̃ × G̃)/G, the tautological projection π :

G̃× G̃→ (G̃× G̃)/G, and the associated sequence of functors

QCohG(G̃×G G̃)
δ∗ // QCohG(G̃× G̃)

π∗
// QCoh(G̃× G̃).

It is clear both functors δ∗ and π∗ are t-exact and conservative, as δ∗ is pushforward along a closed embedding,
and π∗ is pullback along a faithfully flat map. We also note that δ∗ and π∗ are both naturally monoidal.
Indeed, for δ∗, if we consider the pullback monoidal functor QCoh(pt /G) → QCoh(G/G), we note that δ∗
canonically identifies with the composition

QCohG(G̃×G G̃) ≃ EndQCoh(G/G)(QCoh(G̃/G))
Oblv−−−→ EndQCoh(pt /G)(QCoh(G̃/G)) ≃ QCohG(G̃× G̃),

where Oblv denotes the tautological restriction from QCoh(G/G)-equivariant functors to QCoh(pt /G)-
equivariant functors. Similarly, π∗ canonically identifies with the composition

QCohG(G̃× G̃) ≃ EndQCoh(pt /G)(QCoh(G̃/G))

− ⊗
QCoh(pt /G)

QCoh(pt)

−−−−−−−−−−−−−−→

End(QCoh(G̃/G) ⊗
QCoh(pt /G)

QCoh(pt)) ≃ End(QCoh(G̃)) ≃ QCoh(G̃× G̃),

where −⊗QCoh(pt /G) QCoh(pt) explicitly is the functor of de-equivariantization.

Using these observations, it is therefore enough to produce an integer d such that for all y ∈ Wf the
functors

− ⋆ (π∗ ◦ δ∗ ◦ ι!(∆y))[−d] : QCoh(G̃× G̃)→ QCoh(G̃× G̃)

are left exact. However, we claim more generally that for any finite set Φi, i ∈ I, of endofunctors of QCoh(G̃)

admitting continuous right adjoints, with corresponding integral kernels Ki ∈ QCoh(G̃ × G̃), i ∈ I, there
exists an integer d such that

− ⋆Ki[−d] : QCoh(G̃× G̃)→ QCoh(G̃× G̃)

are all left exact. Indeed, under the tautological identification of − ⋆Ki with

QCoh(G̃× G̃) ≃ QCoh(G̃)⊗QCoh(G̃)
id⊗Φi−−−−→ QCoh(G̃)⊗QCoh(G̃) ≃ QCoh(G̃× G̃),

it follows that −⋆Ki also admits a continuous right adjoint, and in particular preserves compactness. Noting

that the structure sheaf of the diagonal ∆∗(OG̃) is perfect by the smoothness of G̃, and that − ⋆ Ki sends
∆∗(OG̃) to Ki, it therefore follows that Ki is also a perfect complex. Using this perfectness, it follows that
each − ⋆Ki is t-bounded, whence the existence of the desired d follows by the finiteness of I.
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Step 3. Having shown the existence of an integer d as in the discussion near Equation (10), let us show
we may take N ′ = d, where N ′ is as in the discussion of Step 1. That is, for any compact object η of H
satisfying ι!(η) ⩾ 0, we will show that η ⩾ −d.
Because ∆−µ ⋆ − is left exact, for any µ ∈ Λ, and ∆−µ ⋆∇µ ⋆ η ≃ η, it suffices to show for some µ ∈ Λ

that ∇µ ⋆ η ⩾ −d, i.e., that for all w ∈W we have

(11) Hom(∆w,∇µ ⋆ η) ⩾ −d.

We will show the claim for any µ for which ∇µ ⋆η is in the full subcategory generated by shifts of the objects
∇x, for x ∈ Λ++ ·Wf ⊂W ; note the set of such µ contains all sufficiently dominant elements, thanks to the
compactness of η, and is in particular nonempty.

For such a µ, to verify (11), we may assume that w ∈ Λ++ ·Wf , as otherwise Hom(∇w,∇µ ⋆ η) vanishes.
Note that any x ∈ Λ++ ·Wf is of maximal length in its right coset Wf · x. As Ξ ⋆ ∆w admits a standard
filtration with successive quotients ∆z·w, for z ∈Wf , of which ∆w is tautologically the only graded piece of
maximal length in its right Wf -coset, it follows that we have

Hom(∆w,∇µ ⋆ η) ≃ Hom(Ξ ⋆∆w,∇µ ⋆ η).

To make contact with the spectral side, let us rewrite Ξ ⋆∆w using Wakimoto sheaves, as follows. Writing
w◦ for the longest element of Wf , note this is equivalently given by

≃ Hom(Ξ ⋆∆w◦w,∇µ ⋆ η).

Since w ∈ Λ++·Wf , we have w◦w ∈ Λ−−·Wf ; write w◦w = (−λ)·y for the corresponding unique factorization,
with −λ ∈ Λ−− and y ∈Wf . Noting that −λ is of maximal length in −λ ·Wf , we have

≃ Hom(Ξ ⋆∆−λ ⋆∇y,∇µ ⋆ η)

which after rearranging terms yields the expression

≃ Hom(∆−µ ⋆ Ξ ⋆∆−λ, η ⋆∆y−1).

To proceed, note that ∆−µ and ∆−λ are Wakimoto sheaves, as −µ,−λ ∈ Λ−, i.e., we have

≃ Hom(W−µ ⋆ Ξ ⋆ W−λ, η ⋆∆y−1).

Recalling that ι! is an equivariant functor between H-bimodules, which satisfies ι!(O) ≃ Ξ, we obtain

≃ Hom(ι!(O(−µ,−λ)), η ⋆∆y−1)

≃ Hom(O(−µ,−λ)), ι!(η) ⋆ ι!(∆y−1)).

By the assumption that ι!(η) ⩾ 0, and the definition of d, it follows that ι!(η) ⋆ ι!(∆y−1) ⩾ −d. Therefore,
we obtain the inequality (11), as desired. □

It remains to prove the ‘if’ direction, i.e., that every infinitely connective object lies in the kernel of ι!.
So, fix an infinitely connective object ξ ∈ H⩽−∞. We need to show that ξ acts by zero on χH, i.e., that

χh ⋆ ξ ≃ 0 for every object χh of χH. It is enough to check this for χh running through a set of compact
generators of χH, and hence for objects of the form χδ ⋆ c, for c ∈ Hc. Noting that (χδ ⋆ c) ⋆ ξ ≃ χδ ⋆ (c ⋆ ξ),
and that ξ′ := c⋆ξ is again infinitely connective, it therefore remains to show that χδ ⋆ξ

′ ≃ Avχ(ξ
′) vanishes.

We claim it is enough to show the following.

Lemma 3.3.4. The equivalence χH ≃ QCohG(G̃) of Theorem 2.5.4 is t-bounded.

Indeed, as Avχ is exact, as can be seen by considering χH as left comodules for the tilting object Ξ, it
follows that Avχ(ξ

′) is again infinitely connective. But by the lemma, χH contains no nonzero infinitely
connective objects, as this is clear on the spectral side.
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Proof of Lemma 3.3.4. Let us write F : χH ≃ QCohG(G̃) for the equivalence of Theorem 2.5.4.

Let us first show that F is left exact. Suppose ξ ∈ χH and ξ ⩾ 0. Then in particular, recalling that for
V ∈ Rep(G)♡ and λ ∈ Λ the object χδ ⋆ ZV ⋆ Wλ is perverse, it follows that

HomQCoh(G̃/G)(V ⊗ O(λ),F(ξ)) ≃ Hom
χH(χδ ⋆ ZV ⋆ Wλ, ξ) ⩾ 0,

whence F(ξ) ⩾ 0 as well.

It remains to show that F−1 is also left exact up to a shift. To do so, let us write fW ⊂ W for the set of
elements x ∈W which are minimal in Wf · x. Note first that the objects

Avχ ∆x, x ∈ fW,

are exactly the standard objects of χH, and in particular the perverse t-structure on χH may be characterized
by

ζ ⩾ 0 if and only if Hom
χH(Avχ ∆x, ζ) ⩾ 0, for all x ∈ fW.

Note next that, if we write x ∈ W as x = λ · y, we have that x ∈ fW if and only if (i) λ ∈ Λ− and (ii) for
each (finite) positive root α such that ⟨λ, α⟩ = 0, we have that y(α) > 0. Using this, it is straightforward to
see that ℓ(x) = ℓ(λ)− ℓ(y), and hence we may write

(12) ∆x ≃ ∆λ ⋆∇y = Wλ ⋆∇y,

and in particular Avχ ∆x ≃ (Avχ ∆λ) ⋆∇y.

As in the proof of Step 2 of Lemma 3.3.3, we may choose an integer d such that the autoequivalences

− ⋆ ι!(∇z)[d] : QCohG(G̃) ≃ QCohG(G̃)

are all right exact. With this, we claim that if an object E of QCohG(G̃) satisfies E ⩾ d, then F−1(E) ⩾ 0.
Indeed, for any x, λ, and y as in Equation (12) we have

HomχH(Avχ ∆x,F
−1E) ≃ HomχH((Avχ Wλ) ⋆∇y,F

−1E)

≃ HomQCohG(G̃)
(O(λ) ⋆ ι!(∇y),E),

which is indeed coconnective as O(λ) ⋆ ι!(∇y) ⩽ d and E ⩾ d. □

□

Remark 3.3.5. The semi-infinite Hecke category Shvnilp(NF T̊O\GF /NF T̊O), with its natural t-structure, is
from certain perspectives a more natural choice of category on the automorphic side, though it is derived
equivalent to H by a standard argument of Borel–Casselman–Bushnell–Kutzko–Raskin. Nonetheless, its
presence may be felt in the proof of Lemma 3.3.3 and Lemma 3.3.4, in a manner directly inspired by its
similar presence in the striking proof of Lemma 38 in [B16].

3.3.6. To state the following corollary, note that the Verdier quotient

q : H→ H/H⩽−∞

inherits a monoidal structure, as H⩽−∞ is a two sided ideal in H, by the t-boundedness of convolution with
compact objects in H. Additionally, the Verdier quotient inherits a unique t-structure with the property
that q is t-exact, and this induces an equivalence on eventually coconnective parts

(13) q : H+ ≃ (H/H⩽−∞)+.

Corollary 3.3.7. The monoidal functor ι! factors uniquely through a t-bounded monoidal equivalence

H/H⩽−∞ ≃ QCohG(G̃×G G̃).
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Proof. The assertion at the level of monoidal categories is immediate from the statement of Theorem 3.3.2.

For the assertion regarding t-boundedness, it is enough to see this on compact objects of QCohG(G̃ ×G G̃),
but this is a special case of Lemma 3.3.3. □

3.4. Anticompletion.

3.4.1. To prove Theorem 1.2.5, it remains to show the following.

Proposition 3.4.2. The monoidal functor ι! restricts to an equivalence of small monoidal categories

(14) Hc ≃ CohG(G̃×G G̃).

Indeed, Theorem 1.2.5 then follows by passing to the ind-completions of both sides of (14).

3.4.3. For the proof of Proposition 3.4.2, we first recall some convenient terminology from [CD23].

Given a category C with a t-structure compatible with filtered colimits, we call an object c of C pseu-
docompact if it is eventually coconnective and Hom(c,−) commutes with uniformly bounded below filtered
colimits. Let us denote the full subcategory of pseudocompact objects by

Psc(C) ↪→ C.

Note that it only depends on the t-structure up to t-bounded equivalence.

Proof of Proposition 3.4.2. It follows from Corollary 3.3.7 that we have an equivalence

Psc(H/H⩽−∞) ≃ Psc(QCohG(G̃×G G̃)).

On the one hand, it is standard that the pseudocompact objects in QCohG(G̃×G G̃) are exactly CohG(G̃×G G̃).
On the other hand, it is straightforward from Equation (13) that q restricts to an equivalence

q : Psc(H) ≃ Psc(H/H⩽−∞).

It therefore remains to check that the tautological inclusion Hc ↪→ Psc(H) is essentially surjective. So,
suppose ξ is a pseudocompact object of H, and in particular eventually coconnective. By writing

ξ ≃ lim−→ iy,! ◦ i!y(ξ),
cf. Equation (4), we deduce by pseudocompactness that ξ is !-extended from a closed, finite union of strata.
Pick a stratum jy : IyI ↪→ LG maximal in the support of ξ. It is straightforward that j!y(ξ) ≃ j∗y(ξ) ∈ R -mod
is again pseudocompact, whence compact by the smoothness of R. By considering the triangle

jy,! ◦ j!y(ξ)→ ξ → ξ′
+1−−→,

and noting that ξ′ is again pseudocompact and is supported on a strictly smaller closed, finite union of
strata, we obtain the compactness of ξ by induction on the number of strata in its support. □

3.4.4. Let us conclude with a couple remarks.

Remark 3.4.5. Note that as the map G̃/G→ G/G is proper and relatively Calabi–Yau of dimension zero, the

monoidal structures on CohG(G̃×G G̃) and hence IndCohG(G̃×G G̃) induced by ∗-convolution and !-convolution
canonically coincide.

In particular, the monoidal categories in Theorem 1.2.5 admit a natural central functor from the sym-
metric monoidal category QCohG(G), equipped with the !-tensor product, and in particular further from the
invariant theory quotient QCoh(G//G). Consider within the invariant theory quotient the formal subscheme

G//Gres.var. ↪→ G//G

obtained as the disjoint union of its formal completions along all its closed points. We have a tautological
adjunction

i∗ : IndCoh(G//G)res.var. ⇆ QCoh(G//G) : i!
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wherein i! is a monoidal colocalization. In particular, i∗ identifies the former with the full subcategory of
the latter generated by all skyscraper sheaves, and our use of !-tensor product, rather than ∗-tensor product,
endows this with a monoidal unit, namely the dualizing sheaf.

If we apply the corresponding base change

− ⊗
QCoh(G//G)

QCoh(G//G)res.var.

to both sides of Theorem 1.2.5, we obtain its analogue with restricted variation, and deduce the corresponding
version of Corollary 1.2.6. In particular, by passing to the appropriate direct summand monoidal categories,
these results confirm a conjecture of Bezrukavnikov, namely [B16, Conjecture 58] over the complex numbers.
This provides an alternative to the endoscopic arguments of [DLYZ24].

Remark 3.4.6. In this paper, we have addressed the case of tame ramification in local Betti geometric
Langlands. It is extremely natural to expect the existence of a wildly ramified local Betti correspondence,
involving on the spectral side moduli spaces of Stokes data. To our knowledge no precise formulation of such
a correspondence is as of yet available.
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