A stochastic fluid-structure interaction problem describing Stokes flow interacting with a membrane

Jeffrey Kuan University of California, Berkeley Department of Mathematics September 8, 2021

*Joint work with Sunčica Čanić

Fluid-structure interaction

- The coupled dynamical interaction between a viscous incompressible fluid and a deformable structure
- Fully coupled problems are difficult: mixed parabolic-hyperbolic system
- Two types of couplings: linear coupling (assume fixed fluid domain) and nonlinear coupling

Literature review

Deterministic models of **fluid-structure interaction**

- with linear coupling (Du-Gunzburger-Hou-Lee '03, Barbu-Grujić-Lasiecka-Tuffaha '07 and '08, Kukavica-Tufaha-Ziane '10, Kuan-Čanić '21)
- with nonlinear coupling (Muha-Čanić '13, da Veiga '04, Lequeurre '11, Chambolle-Desjardins-Esteban-Grandmont '05)

Solutions of **stochastic partial differential equations**:

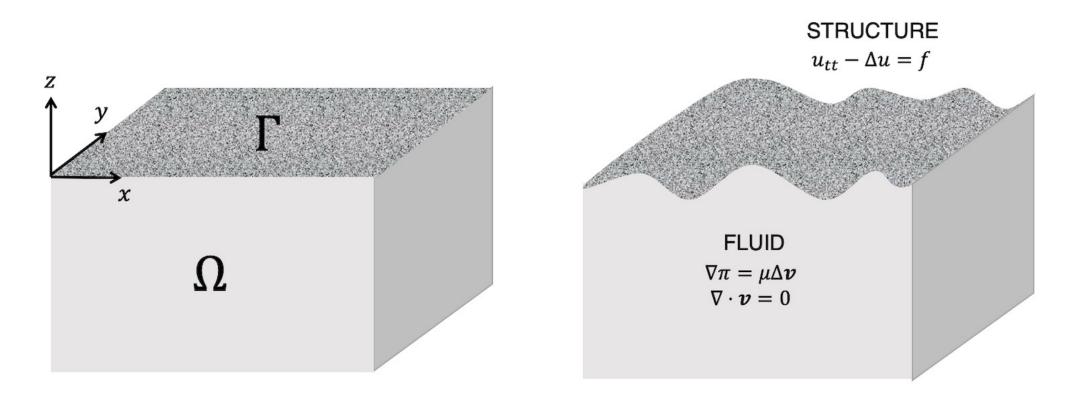
- Stochastic wave equations (Dalang-Frangos '98, Dalang '99, Karczewska-Zabcyk '99, Conus-Dalang '08, Dalang-Sanz-Solé '09)
- Stochastic Navier-Stokes equation (Bensoussan-Temam '73, Capinski-Gatarek '94, Flandoli-Gatarek '95)
- Stochastic one layer shallow water equations (Link-Nguyen-Temam '17)

Not much past work on stochastic fluid-structure interaction

Stochastic fluid-structure interaction

Stochastic viscous wave equation (Kuan-Čanić '21)

$$u_{tt} + \sqrt{-\Delta u_t} - \Delta u = W(dx, dt)$$
 in \mathbb{R}^n



Stochastic fluid-structure interaction

Viscous nonlinear wave equation (Kuan-Čanić '21 in Trans. AMS)

$$u_{tt} + \sqrt{-\Delta u_t} - \Delta u + u^p = 0, \quad \text{in } \mathbb{R}^n$$

- *Probabilistic* **local and global well-posedness** of the *deterministic* viscous wave equation with a power nonlinearity (Kuan-Čanic '21 in Trans. AMS, Kuan-Oh '21)
- Existence of mild solution in dimensions one and two to *stochastic* viscous wave equation and Hölder regularity properties (Kuan-Čanic '21)
- Local and global well-posedness for singular stochastic viscous nonlinear wave equations (Liu-Oh '21)

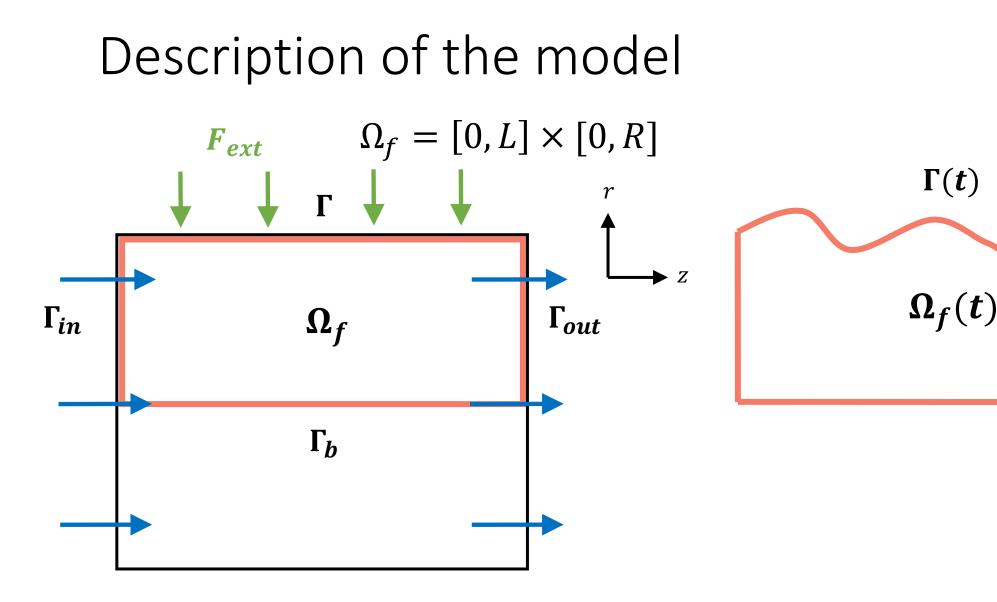
GOAL: Extend existence results to fully coupled FSI.

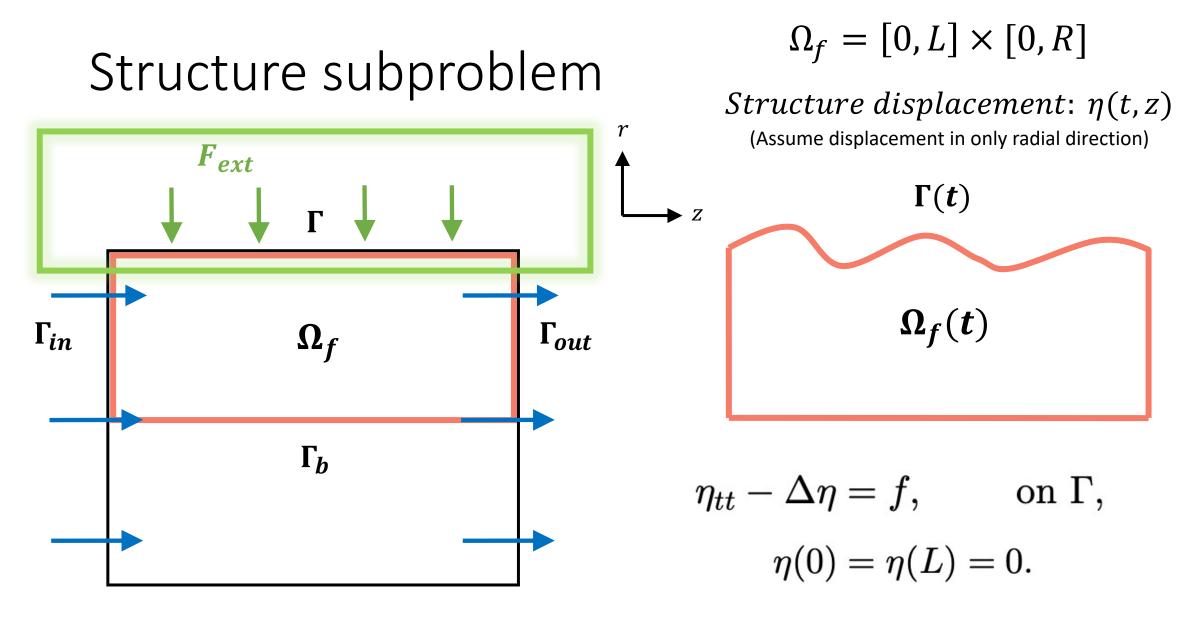
Stochastic fluid-structure interaction

Stochastic viscous wave equation (Kuan-Čanić '21) $u_{tt} + \sqrt{-\Delta}u_t - \Delta u = W(dx, dt) \qquad \text{in } \mathbb{R}^n$

- *Probabilistic* **local and global well-posedness** of the *deterministic* viscous wave equation with a power nonlinearity (Kuan-Čanic '21 in Trans. AMS, Kuan-Oh '21)
- Existence of mild solution in dimensions one and two to *stochastic* viscous wave equation and Hölder regularity properties (Kuan-Čanic '21)
- Local and global well-posedness for singular stochastic viscous nonlinear wave equations (Liu-Oh '21)

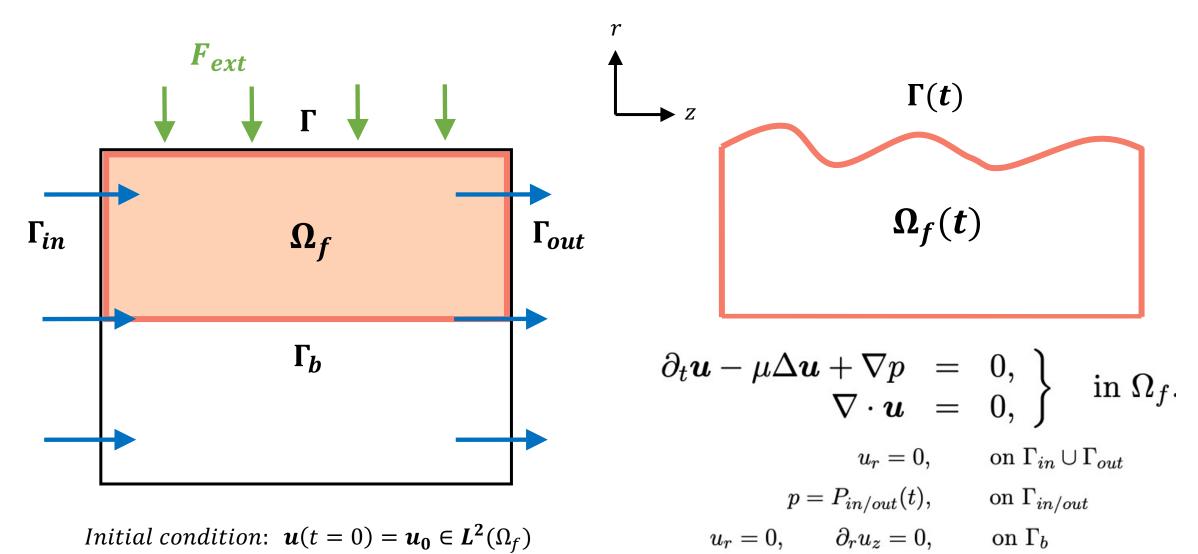
GOAL: Extend existence results to fully coupled FSI.



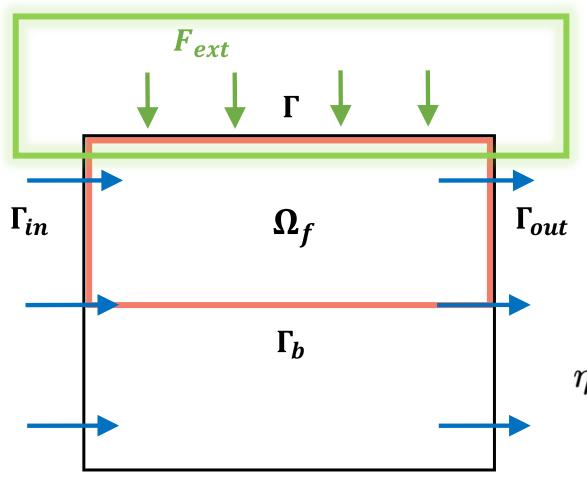


Initial condition: $\eta(t=0) = \eta_0 \in H_0^1(\Gamma), \quad \partial_t \eta(t=0) = v_0 \in L^2(\Gamma)$

Fluid subproblem Fluid velocity: $u(t,z,r) = (u_z(t,z,r), u_r(t,z,r))$



Coupling conditions



Kinematic coupling condition

(continuity of velocities)

$$oldsymbol{u} = \eta_t oldsymbol{e}_r, \qquad ext{ on } \Gamma_r$$

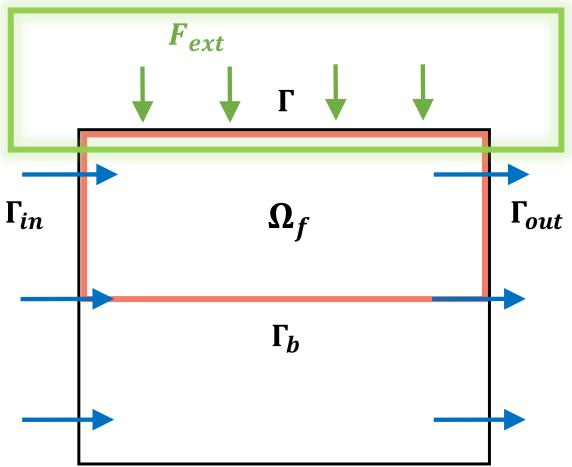
Dynamic coupling condition

(jump in internal and external loading on the structure)

$$\eta_{tt} - \Delta \eta = -\boldsymbol{\sigma} \boldsymbol{e}_{\boldsymbol{r}} \cdot \boldsymbol{e}_{\boldsymbol{r}} + F_{ext}, \quad \text{on } \Gamma$$

where
$$oldsymbol{\sigma} = -poldsymbol{I} + 2\muoldsymbol{D}(oldsymbol{u})$$

Stochastic effects



Dynamic coupling condition

(jump in internal and external loading on the structure)

$$\eta_{tt} - \Delta \eta = -\boldsymbol{\sigma} \boldsymbol{e}_{\boldsymbol{r}} \cdot \boldsymbol{e}_{\boldsymbol{r}} + F_{ext}, \quad \text{on } \Gamma$$

Let W(t) be a one-dimensional Brownian motion with respect to a probability space with *complete*^{*} filtration $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \ge 0}, \mathbb{P})$

$$F_{ext} = \dot{W}(t)$$

* \mathcal{F}_t contains all null sets so the almost sure limit of \mathcal{F}_t measurable random variables is also \mathcal{F}_t measurable.

A priori energy estimate

ENERGY
$$E(T) := \frac{1}{2} \int_{\Gamma} |\nabla \eta|^2 dz + \frac{1}{2} \int_{\Gamma} |v|^2 dz + \frac{1}{2} \int_{\Omega_f} |u|^2 dx$$
$$d\left(\frac{1}{2} \int_{\Gamma} |\nabla \eta|^2 dz + \frac{1}{2} \int_{\Gamma} |v|^2 dz + \frac{1}{2} \int_{\Omega_f} |u|^2 dx\right)$$
$$= \left(\frac{L}{2} - 2\mu \int_{\Omega_f} |D(u)|^2 dx + \int_{\Gamma_{in}} pu_z dr - \int_{\Gamma_{out}} pu_z dr\right) dt + \left(\int_{\Gamma} v dz\right) dW.$$

STOCHASTICITY FLUID DISSIPATION

$$\mathbb{E}\left(\max_{0\leq t\leq T} E(t) + \mu \int_0^t \int_{\Omega_f} |\boldsymbol{D}(\boldsymbol{u})|^2 d\boldsymbol{x}\right) \leq C\left(T + E(0) + ||P_{in}(t)||^2_{L^2(0,T)} + ||P_{out}(t)||^2_{L^2(0,T)}\right)$$

Solution space and test space

$$\mathbb{E}\left(\max_{0 \le t \le T} E(t) + \mu \int_0^t \int_{\Omega_f} |\boldsymbol{D}(\boldsymbol{u})|^2 d\boldsymbol{x}\right) \le C\left(T + E(0) + ||P_{in}(t)||^2_{L^2(0,T)} + ||P_{out}(t)||^2_{L^2(0,T)}\right)$$

$$E(t):=\frac{1}{2}\int_{\Gamma}|\nabla\eta|^2dz+\frac{1}{2}\int_{\Gamma}|v|^2dz+\frac{1}{2}\int_{\Omega_f}|\boldsymbol{u}|^2d\boldsymbol{x}$$

$$\mu\int_0^T\int_{\Omega_f}|oldsymbol{D}(oldsymbol{u})|^2doldsymbol{x}$$

Solution space and test space

$$\mathbb{E}\left(\max_{0 \le t \le T} E(t) + \mu \int_0^t \int_{\Omega_f} |\boldsymbol{D}(\boldsymbol{u})|^2 d\boldsymbol{x}\right) \le C\left(T + E(0) + ||P_{in}(t)||^2_{L^2(0,T)} + ||P_{out}(t)||^2_{L^2(0,T)}\right)$$

$$E(t):=rac{1}{2}\int_{\Gamma}|
abla \eta|^2dz+rac{1}{2}\int_{\Gamma}|v|^2dz+rac{1}{2}\int_{\Omega_f}|oldsymbol{u}|^2doldsymbol{x}$$

$$\mu \int_0^T \int_{\Omega_f} |oldsymbol{D}(oldsymbol{u})|^2 doldsymbol{x}$$

FLUID $\mathcal{V}_F = \{ \boldsymbol{u} = (u_z, u_r) \in H^1(\Omega_f)^2 : \nabla \cdot \boldsymbol{u} = 0, \ u_z = 0 \text{ on } \Gamma, \ u_r = 0 \text{ on } \partial\Omega_f \setminus \Gamma \}.$ $\mathcal{W}_F(0, T) = L^2(\Omega; L^{\infty}(0, T; L^2(\Omega_f))) \cap L^2(\Omega; L^2(0, T; \mathcal{V}_F)).$ STRUCTURE $\mathcal{V}_S = H_0^1(\Gamma).$ $\mathcal{W}_S(0, T) = L^2(\Omega; W^{1,\infty}(0, T; L^2(\Gamma))) \cap L^2(\Omega; L^{\infty}(0, T; \mathcal{V}_S)).$

Solution space and test space

$$\mathbb{E}\left(\max_{0 \le t \le T} E(t) + \mu \int_0^t \int_{\Omega_f} |\boldsymbol{D}(\boldsymbol{u})|^2 d\boldsymbol{x}\right) \le C\left(T + E(0) + ||P_{in}(t)||^2_{L^2(0,T)} + ||P_{out}(t)||^2_{L^2(0,T)}\right)$$

$$E(t):=rac{1}{2}\int_{\Gamma}|
abla \eta|^2dz+rac{1}{2}\int_{\Gamma}|v|^2dz+rac{1}{2}\int_{\Omega_f}|oldsymbol{u}|^2doldsymbol{x}$$

$$\mu \int_0^T \int_{\Omega_f} |oldsymbol{D}(oldsymbol{u})|^2 doldsymbol{x}$$

FLUID $\mathcal{V}_F = \{ \boldsymbol{u} = (u_z, u_r) \in H^1(\Omega_f)^2 : \nabla \cdot \boldsymbol{u} = 0, \ u_z = 0 \text{ on } \Gamma, \ u_r = 0 \text{ on } \partial\Omega_f \setminus \Gamma \}.$ $\mathcal{W}_F(0, T) = L^2(\Omega; L^{\infty}(0, T; L^2(\Omega_f))) \cap L^2(\Omega; L^2(0, T; \mathcal{V}_F)).$ **STRUCTURE** $\mathcal{V}_S = H_0^1(\Gamma).$
 $\mathcal{W}_S(0, T) = L^2(\Omega; W^{1,\infty}(0, T; L^2(\Gamma))) \cap L^2(\Omega; L^{\infty}(0, T; \mathcal{V}_S)).$

 $\mathcal{W}(0,T) = \{(\boldsymbol{u},\eta) \in \mathcal{W}_F(0,T) \times \mathcal{W}_S(0,T) : \boldsymbol{u}|_{\Gamma} = \eta_t \boldsymbol{e_r} \text{ for almost every } t \in [0,T], \text{ a.s.}\}.$

 $\mathcal{Q}(0,T) = \{ (\boldsymbol{q},\psi) \in C_c^1([0,T); \mathcal{V}_F \times \mathcal{V}_S) : \boldsymbol{q}(t,z,R) = \psi(t,z)\boldsymbol{e_r}. \}$

Definition of a solution

$$\eta_{tt} - \Delta \eta = -\boldsymbol{\sigma} \boldsymbol{e}_{\boldsymbol{r}} \cdot \boldsymbol{e}_{\boldsymbol{r}} + F_{ext}(t) \quad \text{on } \Gamma$$

$$\begin{array}{rcl} \partial_t \boldsymbol{u} &=& \nabla \cdot \boldsymbol{\sigma}, \\ \nabla \cdot \boldsymbol{u} &=& 0, \end{array} \right\} \quad \text{in } \Omega_f$$

Definition of a solution

$$\eta_{tt} - \Delta \eta = -\boldsymbol{\sigma} \boldsymbol{e}_{\boldsymbol{r}} \cdot \boldsymbol{e}_{\boldsymbol{r}} + F_{ext}(t) \quad \text{on } \Gamma \qquad \qquad \begin{array}{ccc} \partial_t \boldsymbol{u} & = & \nabla \cdot \boldsymbol{\sigma}, \\ \nabla \cdot \boldsymbol{u} & = & 0, \end{array} \right\} \quad \text{in } \Omega_f$$

$$\begin{split} -\int_0^T \int_{\Omega_f} \boldsymbol{u} \cdot \partial_t \boldsymbol{q} d\boldsymbol{x} dt + 2\mu \int_0^T \int_{\Omega_f} \boldsymbol{D}(\boldsymbol{u}) : \boldsymbol{D}(\boldsymbol{q}) d\boldsymbol{x} dt - \int_0^T \int_{\Gamma} \partial_t \eta \partial_t \psi dz dt + \int_0^T \int_{\Gamma} \nabla \eta \cdot \nabla \psi dz dt \\ &= \int_0^T P_{in}(t) \left(\int_{\Gamma_{in}} q_z dr \right) dt - \int_0^T P_{out}(t) \left(\int_{\Gamma_{out}} q_z dr \right) dt \\ &+ \int_{\Omega_f} \boldsymbol{u}_0 \cdot \boldsymbol{q}(0) d\boldsymbol{x} + \int_{\Gamma} v_0 \psi(0) dz + \int_0^T \left(\int_{\Gamma} \psi dz \right) F_{ext}(t) dt, \end{split}$$

for all (deterministic) test functions in $\mathcal{Q}(0,T) = \{(q,\psi) \in C_c^1([0,T); \mathcal{V}_F \times \mathcal{V}_S) : q(t,z,R) = \psi(t,z)e_r\}$

Definition of a solution

$$\begin{split} &-\int_{0}^{T}\int_{\Omega_{f}}\boldsymbol{u}\cdot\partial_{t}\boldsymbol{q}d\boldsymbol{x}dt+2\mu\int_{0}^{T}\int_{\Omega_{f}}\boldsymbol{D}(\boldsymbol{u}):\boldsymbol{D}(\boldsymbol{q})d\boldsymbol{x}dt-\int_{0}^{T}\int_{\Gamma}\partial_{t}\eta\partial_{t}\psi dzdt+\int_{0}^{T}\int_{\Gamma}\nabla\eta\cdot\nabla\psi dzdt\\ &=\int_{0}^{T}P_{in}(t)\left(\int_{\Gamma_{in}}q_{z}dr\right)dt-\int_{0}^{T}P_{out}(t)\left(\int_{\Gamma_{out}}q_{z}dr\right)dt\\ &+\int_{\Omega_{f}}\boldsymbol{u}_{0}\cdot\boldsymbol{q}(0)d\boldsymbol{x}+\int_{\Gamma}v_{0}\psi(0)dz+\int_{0}^{T}\left(\int_{\Gamma}\psi dz\right)F_{ext}(t)dt,\end{split}$$
In the case where $F_{ext}(t)=\dot{W}(t),$
we interpret $\int_{0}^{T}\left(\int_{\Gamma}\psi dz\right)F_{ext}(t)dt,$ as $\int_{0}^{T}\left(\int_{\Gamma}\psi dz\right)dW(t).$

Stochastic basis

A stochastic basis is an ordered collection, consisting of

 $\mathcal{S} = (\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \ge 0}, \mathbb{P}, W),$

where $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space, $\{\mathcal{F}_t\}_{t\geq 0}$ is a complete filtration with respect to this probability space, and W is a one-dimensional Brownian motion on the probability space with respect to the filtration $\{\mathcal{F}_t\}_{t\geq 0}$, meaning that

- W has continuous paths, almost surely,
- W is adapted to the filtration $\{\mathcal{F}_t\}_{t\geq 0}$,
- W(t) W(s) is independent of \mathcal{F}_s for all $t \ge s$ and $W(t) W(s) \sim N(0, t-s)$ for all $0 \le s \le t$.

Weak solution

measurable with respect to new probability space

Definition 2.1. An ordered triple $(\tilde{S}, \tilde{u}, \tilde{\eta})$ is a weak solution in a probabilistically weak sense if $\tilde{S} = (\tilde{\Omega}, \tilde{\mathcal{F}}, \{\tilde{\mathcal{F}}_t\}_{t \ge 0}, \tilde{\mathbb{P}}, \tilde{W}),$

is a stochastic basis and $(\tilde{\boldsymbol{u}}, \tilde{\eta}) \in \mathcal{W}(0, T)$ with paths almost surely in $C(0, T; \mathcal{Q}')$ satisfies:

- $(\tilde{\boldsymbol{u}}, \tilde{\eta})$ is adapted to the filtration $\{\tilde{\mathcal{F}}_t\}_{t\geq 0}$,
- $\tilde{\eta}(0) = \eta_0$ almost surely, and
- for all $(\boldsymbol{q}, \psi) \in \mathcal{Q}(0, T)$,

$$\begin{split} -\int_{0}^{T}\int_{\Omega_{f}}\tilde{\boldsymbol{u}}\cdot\partial_{t}\boldsymbol{q}d\boldsymbol{x}dt + 2\mu\int_{0}^{T}\int_{\Omega_{f}}\boldsymbol{D}(\tilde{\boldsymbol{u}}):\boldsymbol{D}(\boldsymbol{q})d\boldsymbol{x}dt - \int_{0}^{T}\int_{\Gamma}\partial_{t}\tilde{\eta}\partial_{t}\psi dzdt + \int_{0}^{T}\int_{\Gamma}\nabla\tilde{\eta}\cdot\nabla\psi dzdt \\ &=\int_{0}^{T}P_{in}(t)\left(\int_{\Gamma_{in}}q_{z}dr\right)dt - \int_{0}^{T}P_{out}(t)\left(\int_{\Gamma_{out}}q_{z}dr\right)dt \\ &+\int_{\Omega_{f}}\boldsymbol{u_{0}}\cdot\boldsymbol{q}(0)d\boldsymbol{x} + \int_{\Gamma}v_{0}\psi(0)dz + \int_{0}^{T}\left(\int_{\Gamma}\psi dz\right)d\tilde{W}, \end{split}$$

almost surely.

Strong solution

measurable with respect to *original* probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$

Definition 2.2. An ordered pair (\boldsymbol{u}, η) is a weak solution in a probabilistically strong sense if $(\boldsymbol{u}, \eta) \in \mathcal{W}(0, T)$ with paths almost surely in $C(0, T; \mathcal{Q}')$ satisfies:

- (\boldsymbol{u},η) is adapted to the filtration $\{\mathcal{F}_t\}_{t\geq 0}$
- $\eta(0) = \eta_0$ almost surely, and
- for all $(\boldsymbol{q}, \psi) \in \mathcal{Q}(0, T)$,

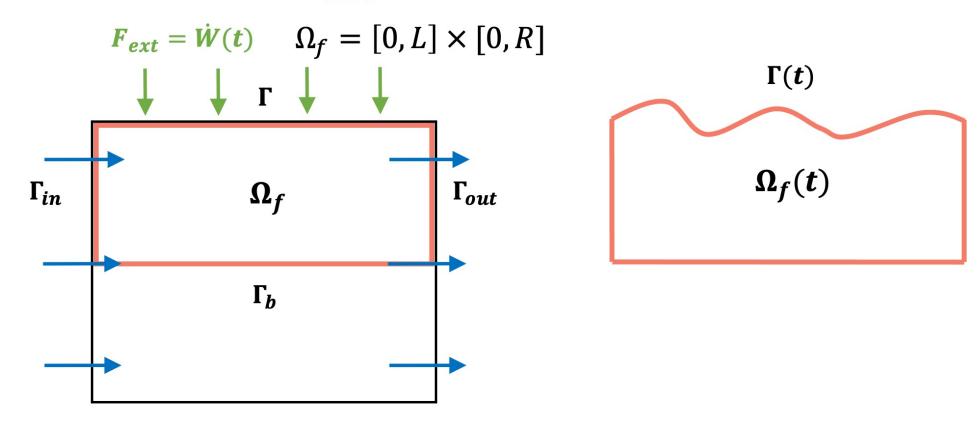
$$\begin{split} -\int_{0}^{T}\int_{\Omega_{f}}\boldsymbol{u}\cdot\partial_{t}\boldsymbol{q}d\boldsymbol{x}dt + 2\mu\int_{0}^{T}\int_{\Omega_{f}}\boldsymbol{D}(\boldsymbol{u}):\boldsymbol{D}(\boldsymbol{q})d\boldsymbol{x}dt - \int_{0}^{T}\int_{\Gamma}\partial_{t}\eta\partial_{t}\psi dzdt + \int_{0}^{T}\int_{\Gamma}\nabla\eta\cdot\nabla\psi dzdt \\ &= \int_{0}^{T}P_{in}(t)\left(\int_{\Gamma_{in}}q_{z}dr\right)dt - \int_{0}^{T}P_{out}(t)\left(\int_{\Gamma_{out}}q_{z}dr\right)dt \\ &+ \int_{\Omega_{f}}\boldsymbol{u_{0}}\cdot\boldsymbol{q}(0)d\boldsymbol{x} + \int_{\Gamma}v_{0}\psi(0)dz + \int_{0}^{T}\left(\int_{\Gamma}\psi dz\right)dW. \end{split}$$

almost surely.

STRATEGY: Construct weak solution, use standard Gyöngy-Krylov theorem argument to return to original probability space

Main theorem

Theorem 2.1. Let $u_0 \in L^2(\Omega_f)$, $v_0 \in L^2(\Gamma)$, and $\eta_0 \in H_0^1(\Gamma)$. Let $P_{in/out} \in L^2_{loc}(0,\infty)$ and let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a Brownian motion W with respect to a complete filtration $\{\mathcal{F}_t\}_{t\geq 0}$. Then, for any T > 0, there exists a unique weak solution in a probabilistically strong sense in the sense of Definition 2.2 to the given stochastic fluid-structure interaction problem.



The splitting scheme

- Discretize in time, splitting the fluid, stochastic, and structure elements in the problem at each time step
- Fluid and structure splitting motivated by Muha and Čanić (2013)
- Stochastic splitting up method motivated by Bensoussan, Glowinski, Răşcanu (1992)

$$deterministic$$

$$dy_1 + A(t, y_1)dt = 0$$

$$dy + A(t, y)dt = B(t, y)dW$$

$$dy_2 = B(t, y_2)dW$$

$$dy_2 = B(t, y_2)dW$$

Solve on each time interval $[k\Delta t, (k + 1)\Delta t]$

General scheme

Let $\Delta t = \frac{T}{N}$, $t_N^n = n\Delta t$. For each time step, iterate three subproblems.

At each step,
$$n = 0, 1, ..., N - 1$$
 and $i = 1, 2, 3$, keep track of $X_N^{n+\frac{i}{3}} = \begin{pmatrix} u_N^{n+\frac{i}{3}} \\ v_N^{n+\frac{i}{3}} \\ \eta_N^{n+\frac{i}{3}} \end{pmatrix}$

and start the scheme with the initial data: $X_N^0 = \begin{pmatrix} v_0 \\ v_0 \\ \eta_0 \end{pmatrix}$, for all N.

GOAL: Take the limit of approximate solutions as $N \rightarrow \infty$. **This requires uniform bounds independent of** N. 1. Structure subproblem Update $\eta^{n+\frac{1}{3}}$ and $v^{n+\frac{1}{3}}$. Keep $\boldsymbol{u}^{n+\frac{1}{3}} = \boldsymbol{u}^n$.

$$\begin{split} &\int_{\Gamma} \frac{\eta^{n+\frac{1}{3}} - \eta^n}{\Delta t} \phi dz = \int_{\Gamma} v^{n+\frac{1}{3}} \phi dz, \qquad \text{for all } \phi \in L^2(\Gamma), \\ &\int_{\Gamma} \frac{v^{n+\frac{1}{3}} - v^n}{\Delta t} \psi dz + \int_{\Gamma} \nabla \eta^{n+\frac{1}{3}} \cdot \nabla \psi dz = 0, \qquad \text{for all } \psi \in H^1_0(\Gamma), \end{split}$$

where we solve this system separately for each $\omega \in \Omega$.

Proposition 4.1. Suppose that η^n and v^n are \mathcal{F}_{t^n} measurable random variables taking values in $H_0^1(\Gamma)$ and $L^2(\Gamma)$ respectively. Then, the structure problem (18) has a unique solution $(\eta^{n+\frac{1}{3}}, v^{n+\frac{1}{3}})$ that is a random variable taking values in $H_0^1(\Gamma) \times H_0^1(\Gamma)$ that is measurable with respect to \mathcal{F}_{t^n} .

2. Stochastic subproblem

$$\eta_{tt} - \Delta \eta = \frac{dW}{dW} \longrightarrow \begin{cases} \eta_t = v, \\ v_t = \Delta \eta + \frac{dW}{dW}. \end{cases}$$

Update
$$v^{n+\frac{2}{3}}$$
. Keep $\eta^{n+\frac{2}{3}} = \eta^{n+\frac{1}{3}}$ and $u^{n+\frac{2}{3}} = u^{n+\frac{1}{3}}$.

$$v^{n+\frac{2}{3}} = v^{n+\frac{1}{3}} + [W((n+1)\Delta t) - W(n\Delta t)].$$

Proposition 4.3. Suppose that $v^{n+\frac{1}{3}}$ is an \mathcal{F}_{t^n} measurable random variable taking values in $H_0^1(\Gamma)$. Then, $v^{n+\frac{2}{3}}$ is an $\mathcal{F}_{t^{n+1}}$ measurable random variable taking values in $H^1(\Gamma)$.

3. Fluid subproblem

Update \boldsymbol{u}^{n+1} and v^{n+1} . Keep $\eta^{n+1} = \eta^{n+\frac{2}{3}}$.

$$egin{aligned} \mathcal{V} &= \{(oldsymbol{u},v) \in \mathcal{V}_F imes L^2(\Gamma) : oldsymbol{u}|_{\Gamma} = voldsymbol{e}_r\}, \ \mathcal{V}_F &= \{oldsymbol{u} = (u_z,u_r) \in H^1(\Omega_f)^2 :
abla \cdot oldsymbol{u} = 0, \ u_z = 0 \ ext{on} \ \Gamma, \ u_r = 0 \ ext{on} \ \Omega_f ackslash \Gamma\}. \ \mathcal{Q} &= \{(oldsymbol{q},\psi) \in \mathcal{V}_F imes H^1_0(\Gamma) : oldsymbol{q}|_{\Gamma} = \psioldsymbol{e}_r\}, \end{aligned}$$

3. Fluid subproblem Update u^{n+1} and v^{n+1} . Keep $\eta^{n+1} = \eta^{n+\frac{2}{3}}$.

For all test functions $(q, \psi) \in Q$,

$$\begin{split} \int_{\Omega_f} \frac{\boldsymbol{u}^{n+1} - \boldsymbol{u}^{n+\frac{2}{3}}}{\Delta t} \cdot \boldsymbol{q} d\boldsymbol{x} + 2\mu \int_{\Omega_f} \boldsymbol{D}(\boldsymbol{u}^{n+1}) : \boldsymbol{D}(\boldsymbol{q}) d\boldsymbol{x} + \int_{\Gamma} \frac{v^{n+1} - v^{n+\frac{2}{3}}}{\Delta t} \psi dz \\ &= P_{in}^n \int_0^R (q_z)|_{z=0} dr - P_{out}^n \int_0^R (q_z)|_{z=L} dr, \end{split}$$

pathwise for each outcome $\omega \in \Omega$, where

$$P_{in/out}^{n} = \frac{1}{\Delta t} \int_{n\Delta t}^{(n+1)\Delta t} P_{in/out}(t) dt.$$

Proposition 4.5. Suppose that $u^{n+\frac{2}{3}}$ and $v^{n+\frac{2}{3}}$ are $\mathcal{F}_{t^{n+1}}$ measurable random variables taking values in \mathcal{V}_F and $H^1(\Gamma)$ respectively. Then, the fluid subproblem (21) has a unique solution (u^{n+1}, v^{n+1}) that is an $\mathcal{F}_{t^{n+1}}$ measurable random variable taking values in \mathcal{V} .

The approximate solution satisfies the following **semidiscrete problem**:

$$\begin{split} \int_{\Omega_f} \frac{\boldsymbol{u}^{n+1} - \boldsymbol{u}^n}{\Delta t} \cdot \boldsymbol{q} d\boldsymbol{x} + 2\mu \int_{\Omega_f} \boldsymbol{D}(\boldsymbol{u}^{n+1}) : \boldsymbol{D}(\boldsymbol{q}) d\boldsymbol{x} + \int_{\Gamma} \frac{\boldsymbol{v}^{n+1} - \boldsymbol{v}^n}{\Delta t} \psi dz + \int_{\Gamma} \nabla \eta^{n+1} \cdot \nabla \psi dz \\ &= \int_{\Gamma} \frac{W((n+1)\Delta t) - W(n\Delta t)}{\Delta t} \psi dz + P_{in}^n \int_{0}^{R} (q_z)|_{z=0} dr - P_{out}^n \int_{0}^{R} (q_z)|_{z=L} dr, \\ &\quad \text{for all } (\boldsymbol{q}, \psi) \in \mathcal{Q}, \end{split}$$

$$\int_{\Gamma} \frac{\eta^{n+1} - \eta^n}{\Delta t} \phi dz = \int_{\Gamma} v^{n+\frac{1}{3}} \phi dz, \qquad \text{for all } \phi \in L^2(\Gamma),$$

where

$$P_{in/out}^{n} = \frac{1}{\Delta t} \int_{n\Delta t}^{(n+1)\Delta t} P_{in/out}(t) dt.$$

The approximate solution satisfies the following **semidiscrete problem**:

$$\begin{split} \int_{\Omega_f} \frac{\boldsymbol{u}^{n+1} - \boldsymbol{u}^n}{\Delta t} \cdot \boldsymbol{q} d\boldsymbol{x} + 2\mu \int_{\Omega_f} \boldsymbol{D}(\boldsymbol{u}^{n+1}) : \boldsymbol{D}(\boldsymbol{q}) d\boldsymbol{x} + \int_{\Gamma} \frac{\boldsymbol{v}^{n+1} - \boldsymbol{v}^n}{\Delta t} \psi dz + \int_{\Gamma} \nabla \eta^{n+1} \cdot \nabla \psi dz \\ &= \int_{\Gamma} \frac{W((n+1)\Delta t) - W(n\Delta t)}{\Delta t} \psi dz + P_{in}^n \int_{0}^{R} (q_z)|_{z=0} dr - P_{out}^n \int_{0}^{R} (q_z)|_{z=L} dr, \\ &\quad \text{for all } (\boldsymbol{q}, \psi) \in \mathcal{Q}, \end{split}$$

$$\int_{\Gamma} \frac{\eta^{n+1} - \eta^n}{\Delta t} \phi dz = \int_{\Gamma} v^{n+\frac{1}{3}} \phi dz, \qquad \text{for all } \phi \in L^2(\Gamma),$$

where

$$P_{in/out}^{n} = \frac{1}{\Delta t} \int_{n\Delta t}^{(n+1)\Delta t} P_{in/out}(t) dt.$$

structure subproblem

The approximate solution satisfies the following **semidiscrete problem**:

$$\begin{split} \int_{\Omega_f} \frac{\boldsymbol{u}^{n+1} - \boldsymbol{u}^n}{\Delta t} \cdot \boldsymbol{q} d\boldsymbol{x} + 2\mu \int_{\Omega_f} \boldsymbol{D}(\boldsymbol{u}^{n+1}) : \boldsymbol{D}(\boldsymbol{q}) d\boldsymbol{x} + \int_{\Gamma} \frac{\boldsymbol{v}^{n+1} - \boldsymbol{v}^n}{\Delta t} \psi d\boldsymbol{z} + \int_{\Gamma} \nabla \eta^{n+1} \cdot \nabla \psi d\boldsymbol{z} \\ = \int_{\Gamma} \frac{W((n+1)\Delta t) - W(n\Delta t)}{\Delta t} \psi d\boldsymbol{z} + P_{in}^n \int_0^R (q_z)|_{z=0} dr - P_{out}^n \int_0^R (q_z)|_{z=L} dr, \\ \text{for all } (\boldsymbol{q}, \psi) \in \mathcal{Q}, \end{split}$$
$$\begin{aligned} \int_{\Gamma} \frac{\eta^{n+1} - \eta^n}{\Delta t} \phi d\boldsymbol{z} &= \int_{\Gamma} \boldsymbol{v}^{n+\frac{1}{3}} \phi d\boldsymbol{z}, \end{aligned} \qquad \text{for all } \phi \in L^2(\Gamma), \end{split}$$

where

$$P_{in/out}^{n} = \frac{1}{\Delta t} \int_{n\Delta t}^{(n+1)\Delta t} P_{in/out}(t) dt.$$

structure subproblem

stochastic subproblem

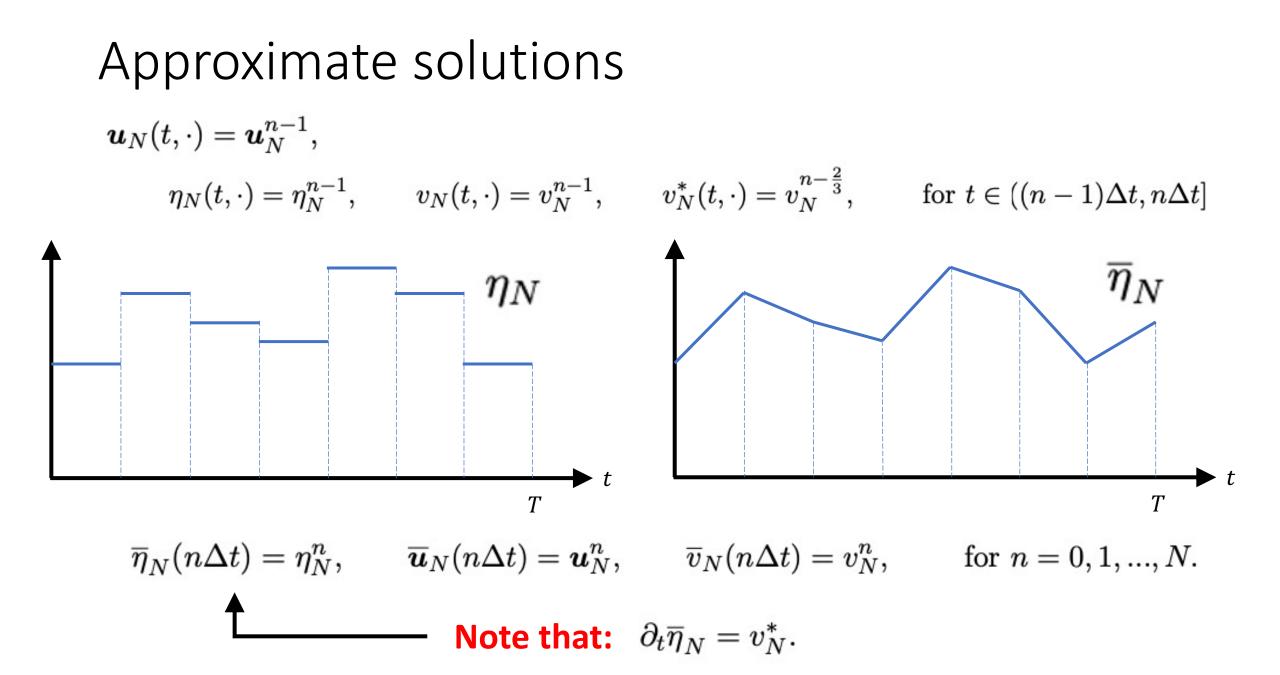
The approximate solution satisfies the following **semidiscrete problem**:

$$\begin{split} \int_{\Omega_f} \frac{u^{n+1} - u^n}{\Delta t} \cdot q dx + 2\mu \int_{\Omega_f} D(u^{n+1}) : D(q) dx + \int_{\Gamma} \frac{v^{n+1} - v^n}{\Delta t} \psi dz + \int_{\Gamma} \nabla \eta^{n+1} \cdot \nabla \psi dz \\ = \int_{\Gamma} \frac{W((n+1)\Delta t) - W(n\Delta t)}{\Delta t} \psi dz + P_{in}^n \int_0^R (q_z)|_{z=0} dr - P_{out}^n \int_0^R (q_z)|_{z=L} dr, \\ \text{for all } (q, \psi) \in \mathcal{Q}, \\ \int_{\Gamma} \frac{\eta^{n+1} - \eta^n}{\Delta t} \phi dz = \int_{\Gamma} v^{n+\frac{1}{3}} \phi dz, \quad \text{for all } \phi \in L^2(\Gamma), \\ \text{where} \\ P_{in/out}^n = \frac{1}{\Delta t} \int_{n\Delta t}^{(n+1)\Delta t} P_{in/out}(t) dt. \end{split}$$

structure subproblem

stochastic subproblem

fluid subproblem



Discrete energy identities

$$E_N^{n+\frac{i}{3}} = \frac{1}{2} \left(\int_{\Omega_f} |\boldsymbol{u}_N^{n+\frac{i}{3}}|^2 d\boldsymbol{x} + ||\boldsymbol{v}_N^{n+\frac{i}{3}}||_{L^2(\Gamma)}^2 + ||\nabla \eta_N^{n+\frac{i}{3}}||_{L^2(\Gamma)}^2 \right)$$
 kinetic and potential energy

$$D_N^{n+1} = (\Delta t) \mu \int_{\Omega_f} | {\bm D}({\bm u}_N^{n+1})|^2 d{\bm x}.$$
 fluid dissipation

.

Discrete energy identities

$$\begin{split} E_{N}^{n+\frac{i}{3}} &= \frac{1}{2} \left(\int_{\Omega_{f}} |\boldsymbol{u}_{N}^{n+\frac{i}{3}}|^{2} d\boldsymbol{x} + ||\boldsymbol{v}_{N}^{n+\frac{i}{3}}||_{L^{2}(\Gamma)}^{2} + ||\nabla \eta_{N}^{n+\frac{i}{3}}||_{L^{2}(\Gamma)}^{2} \right) \\ & \text{kinetic and potential energy} \end{split} \qquad \begin{aligned} D_{N}^{n+1} &= (\Delta t) \mu \int_{\Omega_{f}} |\boldsymbol{D}(\boldsymbol{u}_{N}^{n+1})|^{2} d\boldsymbol{x}. \\ & \text{fluid dissipation} \end{aligned} \\ & \text{fluid dissipation} \end{aligned}$$

Uniform energy estimate

1. Uniform semidiscrete kinetic energy and elastic energy estimate:

$$\mathbb{E}\left(\max_{n=0,1,\ldots,N-1} E_N^{n+\frac{1}{3}}\right) \leq C, \quad \mathbb{E}\left(\max_{n=0,1,\ldots,N-1} E_N^{n+\frac{2}{3}}\right) \leq C, \text{ and } \quad \mathbb{E}\left(\max_{n=0,1,\ldots,N-1} E_N^{n+1}\right) \leq C.$$

2. Uniform semidiscrete viscous fluid dissipation estimate:

$$\sum_{j=1}^{N} \mathbb{E}(D_N^j) \le C$$

3. Uniform numerical dissipation estimate:

$$\begin{split} \sum_{n=0}^{N-1} \left(\mathbb{E} \left(||v_N^{n+\frac{1}{3}} - v_N^n||_{L^2(\Gamma)}^2 \right) + \mathbb{E} \left(||\nabla \eta_N^{n+\frac{1}{3}} - \nabla \eta_N^n||_{L^2(\Gamma)}^2 \right) \right) &\leq C. \\ \sum_{n=0}^{N-1} \mathbb{E} \left(||v^{n+\frac{2}{3}} - v^{n+\frac{1}{3}}||_{L^2(\Gamma)}^2 \right) &\leq C. \\ \sum_{n=0}^{N-1} \left(\mathbb{E} \left(||\boldsymbol{u}_N^{n+1} - \boldsymbol{u}_N^{n+\frac{2}{3}}||_{L^2(\Omega_f)}^2 \right) + \mathbb{E} \left(||v_N^{n+1} - v_N^{n+\frac{2}{3}}||_{L^2(\Gamma)}^2 \right) \right) &\leq C. \end{split}$$

Uniform boundedness

Proposition 5.2. We have the following uniform boundedness results.

- $(\eta_N)_{N \in \mathbb{N}}$ is uniformly bounded in $L^2(\Omega; L^{\infty}(0, T; H^1_0(\Gamma))).$
- $(v_N)_{N\in\mathbb{N}}$ is uniformly bounded in $L^2(\Omega; L^{\infty}(0,T; L^2(\Gamma)))$ and $L^2(\Omega; L^2(0,T; H^{1/2}(\Gamma)))$.
- $(v_N^*)_{N \in \mathbb{N}}$ is uniformly bounded in $L^2(\Omega; L^{\infty}(0, T; L^2(\Gamma)))$.
- $(\boldsymbol{u}_N)_{N\in\mathbb{N}}$ is uniformly bounded in $L^2(\Omega; L^{\infty}(0,T; L^2(\Omega_f)))$ and $L^2(\Omega; L^2(0,T; H^1(\Omega_f)))$.

Proposition 5.3. The sequence of linear interpolations of the structure displacements, $(\overline{\eta}_N)_{N \in \mathbb{N}}$, is uniformly bounded in $L^2(\Omega; L^{\infty}(0, T; H^1_0(\Gamma))) \cap L^2(\Omega; W^{1,\infty}(0, T; L^2(\Gamma)))$.

Passing to the limit

For all $(\boldsymbol{q}, \psi) \in \mathcal{Q}(0, T)$,

$$\begin{split} \int_0^T \int_{\Omega_f} \partial_t \overline{\boldsymbol{u}}_N \cdot \boldsymbol{q} d\boldsymbol{x} + 2\mu \int_0^T \int_{\Omega_f} \boldsymbol{D}(\tau_{\Delta t} \boldsymbol{u}_N) : \boldsymbol{D}(\boldsymbol{q}) d\boldsymbol{x} dt + \int_0^T \int_{\Gamma} \partial_t \overline{\boldsymbol{v}}_N \psi dz dt \\ &+ \int_0^T \int_{\Gamma} \nabla(\tau_{\Delta t} \eta_N) \cdot \nabla \psi dz dt = \sum_{n=0}^{N-1} \int_{n\Delta t}^{(n+1)\Delta t} \int_{\Gamma} \frac{W((n+1)\Delta t) - W(n\Delta t)}{\Delta t} \psi dz dt \\ &+ \sum_{n=0}^{N-1} \left(\int_{n\Delta t}^{(n+1)\Delta t} P_{in}^n \int_0^R (q_z)|_{z=0} dr - \int_{n\Delta t}^{(n+1)\Delta t} P_{out}^n \int_0^R (q_z)|_{z=L} dr dt \right) \end{split}$$

Passing to the limit

For all
$$(\boldsymbol{q}, \boldsymbol{\psi}) \in \mathcal{Q}(0, T)$$
,

$$\int_{0}^{T} \int_{\Omega_{f}} \partial_{t} \overline{\boldsymbol{u}}_{N} \cdot \boldsymbol{q} d\boldsymbol{x} + 2\mu \int_{0}^{T} \int_{\Omega_{f}} \boldsymbol{D}(\tau_{\Delta t} \boldsymbol{u}_{N}) : \boldsymbol{D}(\boldsymbol{q}) d\boldsymbol{x} dt + \int_{0}^{T} \int_{\Gamma} \partial_{t} \overline{\boldsymbol{v}}_{N} \psi dz dt + \int_{0}^{T} \int_{\Gamma} \nabla(\tau_{\Delta t} \eta_{N}) \cdot \nabla \psi dz dt = \sum_{n=0}^{N-1} \int_{n\Delta t}^{(n+1)\Delta t} \int_{\Gamma} \frac{W((n+1)\Delta t) - W(n\Delta t)}{\Delta t} \psi dz dt + \sum_{n=0}^{N-1} \left(\int_{n\Delta t}^{(n+1)\Delta t} P_{in}^{n} \int_{0}^{R} (q_{z})|_{z=0} dr - \int_{n\Delta t}^{(n+1)\Delta t} P_{out}^{n} \int_{0}^{R} (q_{z})|_{z=L} dr dt \right)$$
**Need stronger form of convergence
$$P_{n=0}^{T} \int_{\Omega_{f}} \boldsymbol{u} \cdot \partial_{t} \boldsymbol{q} dx dt + 2\mu \int_{0}^{T} \int_{\Omega_{f}} \boldsymbol{D}(\boldsymbol{u}) : \boldsymbol{D}(\boldsymbol{q}) dx dt - \int_{0}^{T} \int_{\Gamma} \partial_{t} \eta \partial_{t} \psi dz dt + \int_{0}^{T} \int_{\Gamma} \nabla \eta \cdot \nabla \psi dz dt = \int_{0}^{T} P_{in}(t) \left(\int_{\Gamma_{in}} q_{z} dr \right) dt - \int_{0}^{T} P_{out}(t) \left(\int_{\Gamma_{out}} q_{z} dr \right) dt + \int_{\Omega_{f}} \psi dz dt + \int_{0}^{T} \int_{\Gamma} \psi dz dt dW.$$

General outline

- Use **compactness arguments** to obtain tightness of measures corresponding to approximate solutions.
- Use tightness to obtain weak convergence of probability measures.
- Use **Skorokhod representation theorem** to get almost sure convergence on a different probability space.
- Use **Gyöngy-Krylov theorem argument** to obtain almost sure convergence on original probability space.

Probability measures on phase space

 $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, \mathbb{P})$ One dimensional Brownian motion $\{W_t\}_{t \ge 0}$ with respect to $(\mathcal{F}_t)_{t \ge 0}$

$$\mathcal{X} = [L^2(0,T;L^2(\Gamma))]^2 \times [L^2(0,T;L^2(\Omega_f)) \times L^2(0,T;L^2(\Gamma))]^3 \times C(0,T;\mathbb{R}).$$

$$\mu_N = \mu_{\eta_N} \times \mu_{\overline{\eta}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N} \times \mu_{\overline{\boldsymbol{u}}_N} \times \mu_{\overline{\boldsymbol{v}}_N} \times \mu_{\overline{\boldsymbol{v}}_N} \times \mu_W.$$

 $B \subset L^2(0,T;L^2(\Gamma))$, Borel measurable $\mu_{\eta_N}(B) = \mathbb{P}(\eta_N \in B)$

Probability measures on phase space

 $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, \mathbb{P})$ One dimensional Brownian motion $\{W_t\}_{t \ge 0}$ with respect to $(\mathcal{F}_t)_{t \ge 0}$

$$\mathcal{X} = [L^2(0,T;L^2(\Gamma))]^2 \times [L^2(0,T;L^2(\Omega_f)) \times L^2(0,T;L^2(\Gamma))]^3 \times C(0,T;\mathbb{R}).$$

$$\mu_N = \mu_{\eta_N} \times \mu_{\overline{\eta}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N} \times \mu_{\overline{\boldsymbol{u}}_N} \times \mu_{\overline{\boldsymbol{v}}_N} \times \mu_{W}.$$

 $B \subset L^2(0,T;L^2(\Gamma))$, Borel measurable $\mu_{\eta_N}(B) = \mathbb{P}(\eta_N \in B)$

GOAL: Show the measures μ_N are **tight** as probability measures on \mathcal{X}

Compactness arguments

Probability measures $\{\mu_n\}_{n\geq 0}$ on a Banach space *B* are **tight** if for every $\epsilon > 0$, there exists a compact set $K \subset B$ such that $\mu_n(K) \geq 1 - \epsilon$, for all *n*.

Compactness arguments

Probability measures $\{\mu_n\}_{n\geq 0}$ on a Banach space *B* are **tight** if for every $\epsilon > 0$, there exists a compact set $K \subset B$ such that $\mu_n(K) \geq 1 - \epsilon$, for all *n*.

Why do we need compactness arguments?

For real-valued random variables $\{X_n\}_{n\geq 0}$, their laws are tight if $\mathbb{E}(|X_n|^2) \leq C$ uniformly in n by Chebychev's inequality and the fact that any closed ball in \mathbb{R} is compact.

Compactness arguments

Probability measures $\{\mu_n\}_{n\geq 0}$ on a Banach space *B* are **tight** if for every $\epsilon > 0$, there exists a compact set $K \subset B$ such that $\mu_n(K) \geq 1 - \epsilon$, for all *n*.

Why do we need compactness arguments?

For real-valued random variables $\{X_n\}_{n\geq 0}$, their laws are tight if $\mathbb{E}(|X_n|^2) \leq C$ uniformly in n by Chebychev's inequality and the fact that any closed ball in \mathbb{R} is compact.

This is no longer true for general Banach spaces!

For example, $\mathbb{E}(||X_n||_B^2) \le C$ does NOT guarantee tightness because $\{f \in B; ||f||_B \le R\}$ is not compact in B.

Need to embed Banach space into weaker space via compact embedding.

Compactness: structure displacement

 $\mathcal{X} = [L^2(0,T;L^2(\Gamma))]^2 \times [L^2(0,T;L^2(\Omega_f)) \times L^2(0,T;L^2(\Gamma))]^3 \times C(0,T;\mathbb{R}).$

 $\mu_N = \mu_{\eta_N} \times \mu_{\overline{\eta}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N^*} \times \mu_{\overline{\boldsymbol{u}}_N} \times \mu_{\overline{\boldsymbol{v}}_N} \times \mu_W.$

Proposition 5.3. The sequence of linear interpolations of the structure displacements, $(\overline{\eta}_N)_{N \in \mathbb{N}}$, is uniformly bounded in $L^2(\Omega; L^{\infty}(0, T; H^1_0(\Gamma))) \cap L^2(\Omega; W^{1,\infty}(0, T; L^2(\Gamma)))$.

By Aubin-Lions compactness lemma:

Lemma 6.1. We have the following compact embedding.

 $[W^{1,\infty}(0,T;L^2(\Gamma)) \cap L^{\infty}(0,T;H^1_0(\Gamma))] \subset \subset L^{\infty}(0,T;L^2(\Gamma)),$

Compactness: fluid and structure velocity $\mathcal{K} = \{(u, v) \in L^2(0, T; L^2(\Omega_f)) \times L^2(0, T; L^2(\Gamma)) :$ $u = u_N(\omega) \text{ and } v = v_N(\omega) \text{ for some } \omega \in \Omega \text{ and } N \in \mathbb{N}\}.$

For R > 0, let \mathcal{K}_R be the paths $(u_N(\omega), v_N(\omega))$ for which ω and N satisfy:

$$\begin{split} ||(\boldsymbol{u}_{N}, \boldsymbol{v}_{N})||_{L^{2}(0,T;H^{1}(\Omega_{f})) \times L^{2}(0,T;H^{1/2}(\Gamma))} \leq R, & \sum_{n=0}^{N-1} ||\boldsymbol{v}_{N}^{n+\frac{1}{3}} - \boldsymbol{v}_{N}^{n}||_{L^{2}(\Gamma)}^{2} \leq R, \\ ||\eta_{N}||_{L^{\infty}(0,T;H_{0}^{1}(\Gamma))} \leq R. & \sum_{n=0}^{N-1} ||\boldsymbol{v}_{N}^{n+1} - \boldsymbol{u}_{N}^{n+\frac{2}{3}}||_{L^{2}(\Omega_{f})}^{2} \leq R, & \sum_{n=0}^{N-1} ||\boldsymbol{v}_{N}^{n+\frac{1}{3}} - \boldsymbol{v}_{N}^{n}||_{L^{2}(\Gamma)}^{2} \leq R, \\ (\Delta t) \sum_{n=1}^{N} \int_{\Omega_{f}} |\boldsymbol{D}(\boldsymbol{u}_{N}^{n})|^{2} d\boldsymbol{x} \leq R. & \sum_{n=0}^{N-1} ||\boldsymbol{v}_{N}^{n+1} - \boldsymbol{v}_{N}^{n+\frac{2}{3}}||_{L^{2}(\Gamma)}^{2} \leq R. \\ \sum_{n=0}^{N-1} ||\boldsymbol{v}_{N}^{n+\frac{2}{3}} - \boldsymbol{v}_{N}^{n+\frac{1}{3}}||_{L^{2}(\Gamma)}^{2} \leq R, & \sum_{n=0}^{N-1} ||\boldsymbol{v}_{N}^{n+1} - \boldsymbol{v}_{N}^{n+\frac{2}{3}}||_{L^{2}(\Gamma)}^{2} \leq R. \\ \sum_{n=0}^{N-1} ||\boldsymbol{v}_{N}^{n+\frac{2}{3}} - \boldsymbol{v}_{N}^{n+\frac{1}{3}}||_{L^{2}(\Gamma)}^{2} \leq R, & \sum_{n=0}^{N-1} ||\boldsymbol{v}_{N}^{n+1} - \boldsymbol{v}_{N}^{n+\frac{2}{3}}||_{L^{2}(\Gamma)}^{2} \leq R. \\ \sum_{n=0}^{N-1} ||\boldsymbol{v}_{N}^{n+\frac{2}{3}} - \boldsymbol{v}_{N}^{n+\frac{1}{3}}||_{L^{2}(\Gamma)}^{2} \leq R, & \sum_{n=0}^{N-1} ||\boldsymbol{v}_{N}^{n+1} - \boldsymbol{v}_{N}^{n+\frac{2}{3}}||_{L^{2}(\Gamma)}^{2} \leq R. \\ \sum_{n=0}^{N-1} ||\boldsymbol{v}_{N}^{n+\frac{2}{3}} - \boldsymbol{v}_{N}^{n+\frac{1}{3}}||_{L^{2}(\Gamma)}^{2} \leq R, & \sum_{n=0}^{N-1} ||\boldsymbol{v}_{N}^{n+1} - \boldsymbol{v}_{N}^{n+\frac{2}{3}}||_{L^{2}(\Gamma)}^{2} \leq R. \end{split}$$

Lemma 6.2. For any arbitrary positive constant R, the set \mathcal{K}_R is precompact in $L^2(0,T;L^2(\Omega_f)) \times L^2(0,T;L^2(\Gamma))$.

Tightness result

 $\mathcal{X} = [L^2(0,T;L^2(\Gamma))]^2 \times [L^2(0,T;L^2(\Omega_f)) \times L^2(0,T;L^2(\Gamma))]^3 \times C(0,T;\mathbb{R}).$

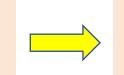
 $\mu_N = \mu_{\eta_N} \times \mu_{\overline{\eta}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N} \times \mu_{\overline{\boldsymbol{u}}_N} \times \mu_{\overline{\boldsymbol{v}}_N} \times \mu_W.$

Conclusion: The probability measures μ_N defined on \mathcal{X} are tight.

Proposition 6.1. Along a subsequence (which we will continue to denote by N), μ_N converges weakly as probability measures to a probability measure μ on \mathcal{X} .

Skorokhod representation theorem

weak convergence of probability measures



almost sure convergence of random variables on another probability space with equivalence of laws

Skorokhod representation theorem

weak convergence of probability measures

almost sure convergence of random variables on another probability space with equivalence of laws

Suppose that the probability measures $\{\mu_n\}_{n\geq 0}$ on a separable Banach space *B* converge weakly to a probability measure μ . Then, there exists $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ and *B*-valued random variables X_n and *X* on this probability space such that $X_n \to X$ almost surely, with laws given by μ_n and μ , respectively.

Skorokhod representation theorem

Suppose that the probability measures $\{\mu_n\}_{n\geq 0}$ on a separable Banach space *B* converge weakly to a probability measure μ . Then, there exists $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ and *B*-valued random variables X_n and *X* on this probability space such that $X_n \to X$ almost surely, with laws given by μ_n and μ , respectively.

Lemma 6.7. There exists a probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ and \mathcal{X} -valued random variables $(\tilde{\eta}_N, \tilde{\overline{\eta}}_N, \tilde{\boldsymbol{u}}_N, \tilde{v}_N, \tilde{\boldsymbol{u}}_N^*, \tilde{\overline{\boldsymbol{v}}}_N, \tilde{\overline{\boldsymbol{u}}}_N, \tilde{\overline{\boldsymbol{v}}}_N, \tilde{W}_N)$, for each N, $(\tilde{\eta}, \tilde{\overline{\eta}}, \tilde{\boldsymbol{u}}, \tilde{v}, \tilde{\boldsymbol{u}}, \tilde{v}, \tilde{\boldsymbol{u}}^*, \tilde{v}^*, \tilde{\overline{\boldsymbol{u}}}, \tilde{\overline{\boldsymbol{v}}}, \tilde{W})$,

such that

for

$$(\tilde{\eta}_N, \tilde{\overline{\eta}}_N, \tilde{\boldsymbol{u}}_N, \tilde{\boldsymbol{v}}_N, \tilde{\boldsymbol{u}}_N^*, \tilde{\overline{\boldsymbol{v}}}_N, \tilde{\overline{\boldsymbol{v}}}_N, \tilde{\overline{\boldsymbol{v}}}_N, \tilde{W}_N) =_d (\eta_N, \overline{\eta}_N, \boldsymbol{u}_N, \boldsymbol{v}_N, \boldsymbol{u}_N, \boldsymbol{v}_N^*, \overline{\boldsymbol{u}}_N, \overline{\boldsymbol{v}}_N, W),$$

all N , and

 $(\tilde{\eta}_N, \tilde{\overline{\eta}}_N, \tilde{\boldsymbol{u}}_N, \tilde{v}_N, \tilde{\boldsymbol{u}}_N^*, \tilde{\overline{\boldsymbol{u}}}_N, \tilde{\overline{\boldsymbol{u}}}_N, \tilde{\overline{\boldsymbol{v}}}_N, \tilde{\overline{\boldsymbol{w}}}_N, \tilde{\overline{\boldsymbol{v}}}_N, \tilde{\overline{$

Weak solution

For all $(\boldsymbol{q}, \boldsymbol{\psi}) \in Q(0, T)$, $\int_{0}^{T} \int_{\Omega_{\tau}} \partial_{t} \tilde{\overline{\boldsymbol{u}}}_{N} \cdot \boldsymbol{q} d\boldsymbol{x} + 2\mu \int_{0}^{T} \int_{\Omega_{\tau}} \boldsymbol{D}(\tau_{\Delta t} \tilde{\boldsymbol{u}}_{N}) : \boldsymbol{D}(\boldsymbol{q}) d\boldsymbol{x} dt + \int_{0}^{T} \int_{\Gamma} \partial_{t} \tilde{\overline{\boldsymbol{v}}}_{N} \psi dz dt$ $+\int_{0}^{T}\int_{\Gamma}\nabla(\tau_{\Delta t}\tilde{\eta}_{N})\cdot\nabla\psi dzdt=\sum_{n=0}^{N-1}\int_{n\Delta t}^{(n+1)\Delta t}\int_{\Gamma}\frac{\tilde{W}_{N}((n+1)\Delta t)-\tilde{W}_{N}(n\Delta t)}{\Delta t}\psi dzdt$ $+\sum_{n=1}^{N-1} \left(\int_{-\infty,t}^{(n+1)\Delta t} P_{in}^{n} \int_{0}^{R} (q_{z})|_{z=0} dr - \int_{-\infty,t}^{(n+1)\Delta t} P_{out}^{n} \int_{0}^{R} (q_{z})|_{z=L} dr dt \right)$ For all $(q, \psi) \in Q(0, T)$, $-\int_{0}^{T}\int_{\Omega_{t}}\tilde{\boldsymbol{u}}\cdot\partial_{t}\boldsymbol{q}d\boldsymbol{x}dt+2\mu\int_{0}^{T}\int_{\Omega_{t}}\boldsymbol{D}(\tilde{\boldsymbol{u}}):\boldsymbol{D}(\boldsymbol{q})d\boldsymbol{x}dt-\int_{0}^{T}\int_{\Gamma}\partial_{t}\tilde{\eta}\partial_{t}\psi dzdt+\int_{0}^{T}\int_{\Gamma}\nabla\tilde{\eta}\cdot\nabla\psi dzdt$ $= \int_{0}^{T} P_{in}(t) \left(\int_{\Gamma} q_{z} dr \right) dt - \int_{0}^{T} P_{out}(t) \left(\int_{\Gamma} q_{z} dr \right) dt$ $+\int_{\Omega} \boldsymbol{u_0} \cdot \boldsymbol{q}(0) d\boldsymbol{x} + \int_{\Gamma} v_0 \psi(0) d\boldsymbol{z} + \int_{\Omega}^{T} \left(\int_{\Gamma} \psi d\boldsymbol{z}\right) d\tilde{W},$

Towards a strong solution

- We want to bring the solution back to the original probability space.
- Use a **Gyöngy-Krylov argument** along with a uniqueness result.

Towards a strong solution

- We want to bring the solution back to the original probability space.
- Use a Gyöngy-Krylov argument along with a uniqueness result.

Lemma 7.2 (Gyöngy-Krylov lemma). Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in a Banach space *B*. For positive integers *m* and *n*, define the joint probability measures $\nu_{m,n}$ on $B \times B$ by

$$\nu_{m,n}(A_1 \times A_2) = \mathbb{P}(X_m \in A_1, X_n \in A_2).$$

Suppose that the following diagonal condition holds: for any arbitrary subsequences $\{m_k\}_{k=1}^{\infty}$ and $\{n_k\}_{k=1}^{\infty}$, there exists a further subsequence such that the joint probability laws $\nu_{m_{k_l},n_{k_l}}$ along this subsequence as $l \to \infty$ converge weakly to a limiting probability measure ν such that

$$\nu(\Delta) = 1,$$

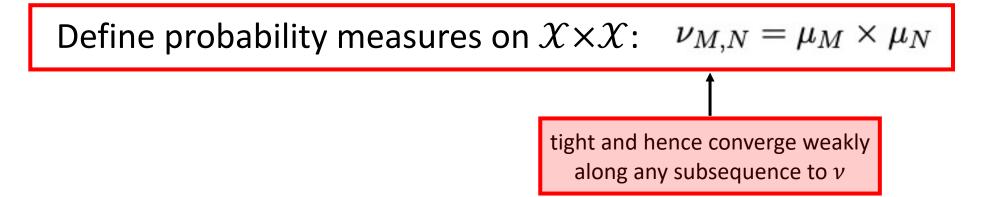
where $\Delta = \{(x, x) : x \in B\}$ denotes the diagonal of $B \times B$. Then, X_n converges in probability to some *B*-valued random variable X as $n \to \infty$.

converges almost surely *in the original topology* along a subsequence

Gyöngy-Krylov argument

 $\mathcal{X} = [L^2(0,T;L^2(\Gamma))]^2 \times [L^2(0,T;L^2(\Omega_f)) \times L^2(0,T;L^2(\Gamma))]^3 \times C(0,T;\mathbb{R}).$

 $\mu_N = \mu_{\eta_N} \times \mu_{\overline{\eta}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N^*} \times \mu_{\overline{\boldsymbol{u}}_N} \times \mu_{\overline{\boldsymbol{v}}_N} \times \mu_W.$



We get *almost sure convergence* along a subsequence *in the original topology* on original probability space once we verify the **diagonal condition**:

$$\nu(\{(x,x):x\in\mathcal{X}\})=1.$$

Gyöngy-Krylov argument

 $\mathcal{X} = [L^2(0,T;L^2(\Gamma))]^2 \times [L^2(0,T;L^2(\Omega_f)) \times L^2(0,T;L^2(\Gamma))]^3 \times C(0,T;\mathbb{R}).$

 $\mu_N = \mu_{\eta_N} \times \mu_{\overline{\eta}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N^*} \times \mu_{\overline{\boldsymbol{u}}_N} \times \mu_{\overline{\boldsymbol{v}}_N} \times \mu_W.$

Given $\nu_{M,N} = \mu_M \times \mu_N$, verify $\nu(\{(x,x) : x \in \mathcal{X}\}) = 1$.

Gyöngy-Krylov argument

 $\mathcal{X} = [L^2(0,T;L^2(\Gamma))]^2 \times [L^2(0,T;L^2(\Omega_f)) \times L^2(0,T;L^2(\Gamma))]^3 \times C(0,T;\mathbb{R}).$

 $\mu_N = \mu_{\eta_N} \times \mu_{\overline{\eta}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N} \times \mu_{\boldsymbol{u}_N} \times \mu_{\boldsymbol{v}_N^*} \times \mu_{\overline{\boldsymbol{u}}_N} \times \mu_{\overline{\boldsymbol{v}}_N} \times \mu_W.$

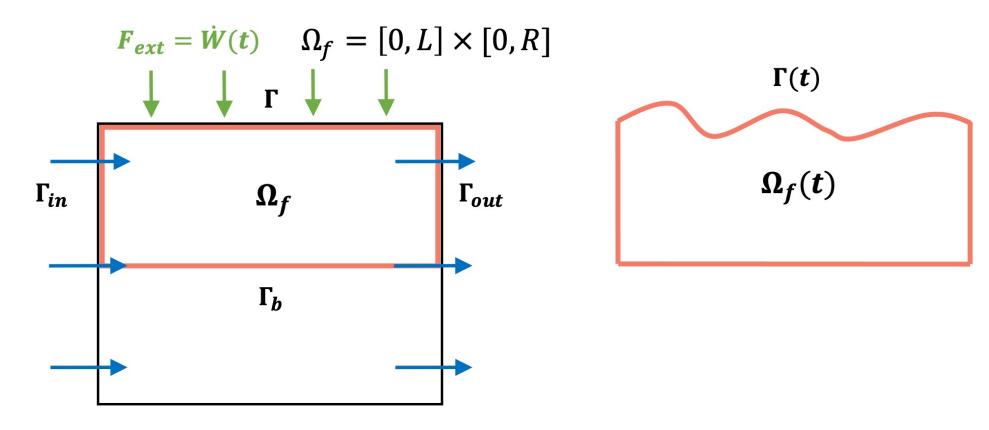
Given $\nu_{M,N} = \mu_M \times \mu_N$, verify $\nu(\{(x,x) : x \in \mathcal{X}\}) = 1$.

Use **Skorokhod representation theorem** to get $(X_{m_k}, X_{n_k}) \rightarrow (X_1, X_2)$ almost surely on a different probability space $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{\mathbb{P}})$, where limit has law given by weak limit ν .

Both X_1 and X_2 satisfy the linear stochastic problem. Diagonal condition follows from uniqueness in law of weak solution to linear stochastic problem since this implies that the laws of X_1 and X_2 are the same.

Main theorem

Theorem 2.1. Let $u_0 \in L^2(\Omega_f)$, $v_0 \in L^2(\Gamma)$, and $\eta_0 \in H_0^1(\Gamma)$. Let $P_{in/out} \in L_{loc}^2(0,\infty)$ and let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a Brownian motion W with respect to a given complete filtration $\{\mathcal{F}_t\}_{t\geq 0}$. Then, for any T > 0, there exists a unique weak solution in a probabilistically strong sense in the sense of Definition 2.2 to the given stochastic fluid-structure interaction problem.



Significance of results

- Despite the very rough Brownian forcing, the stochastic fluid-structure interaction system still supports a solution
- The FSI model of time-dependent Stokes with the wave equation is **robust** under stochastic perturbations
- Provides a method for construction of solutions in stochastic PDEs that works well with fully coupled stochastic problems
- Can be used as a basis for a **numerical scheme** for stochastic FSI
- Extension to moving boundary FSI problems with **nonlinear coupling**