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Fluid-structure interaction

• The coupled dynamical interaction between a viscous incompressible 
fluid and a deformable structure

• Fully coupled problems are difficult: mixed parabolic-hyperbolic 
system

• Two types of couplings: linear coupling (assume fixed fluid domain) 
and nonlinear coupling 



Literature review
Deterministic models of fluid-structure interaction
• with linear coupling (Du-Gunzburger-Hou-Lee '03, Barbu-Grujić-Lasiecka-Tuffaha '07 and 

'08, Kukavica-Tufaha-Ziane '10, Kuan-Čanić ‘21)

• with nonlinear coupling (Muha-Čanić '13, da Veiga '04, Lequeurre '11, Chambolle-
Desjardins-Esteban-Grandmont ’05)

Solutions of stochastic partial differential equations:
• Stochastic wave equations (Dalang-Frangos ‘98, Dalang ‘99, Karczewska-Zabcyk ‘99, 

Conus-Dalang ‘08, Dalang-Sanz-Solé ‘09)
• Stochastic Navier-Stokes equation (Bensoussan-Temam ‘73, Capinski-Gatarek ‘94, 

Flandoli-Gatarek ‘95)
• Stochastic one layer shallow water equations (Link-Nguyen-Temam ’17)

Not much past work on stochastic fluid-structure interaction



Stochastic fluid-structure interaction
Stochastic viscous wave equation (Kuan-Čanić ‘21)



Stochastic fluid-structure interaction
Viscous nonlinear wave equation (Kuan-Čanić ’21 in Trans. AMS)

• Probabilistic local and global well-posedness of the deterministic viscous wave 
equation with a power nonlinearity (Kuan-Čanic ’21 in Trans. AMS, Kuan-Oh ‘21)

• Existence of mild solution in dimensions one and two to stochastic viscous wave 
equation and Hölder regularity properties (Kuan-Čanic ‘21)

• Local and global well-posedness for singular stochastic viscous nonlinear wave 
equations (Liu-Oh ‘21)

GOAL: Extend existence results to fully coupled FSI.
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Description of the model

𝛀𝒇 𝛀𝒇(𝒕)𝚪𝒊𝒏 𝚪𝒐𝒖𝒕
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𝑭𝒆𝒙𝒕 Ω" = 0, 𝐿 × [0, 𝑅]
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Structure subproblem

𝛀𝒇(𝒕)

𝚪(𝒕)

𝛀𝒇𝚪𝒊𝒏 𝚪𝒐𝒖𝒕

𝚪𝒃

𝚪

𝑭𝒆𝒙𝒕

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡: 𝜂(𝑡, 𝑧)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝜂 𝑡 = 0 = 𝜂! ∈ 𝐻!"(Γ), 𝜕#𝜂 𝑡 = 0 = 𝑣! ∈ 𝐿$ Γ

(Assume displacement in only radial direction)

Ω" = 0, 𝐿 × [0, 𝑅]
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Fluid subproblem

𝛀𝒇𝚪𝒊𝒏 𝚪𝒐𝒖𝒕

𝚪𝒃

𝚪

𝑭𝒆𝒙𝒕

𝛀𝒇(𝒕)

𝚪(𝒕)

𝐹𝑙𝑢𝑖𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦: 𝒖 𝑡, 𝑧, 𝑟 = 𝑢@ 𝑡, 𝑧, 𝑟 , 𝑢A 𝑡, 𝑧, 𝑟

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝒖 𝑡 = 0 = 𝒖𝟎 ∈ 𝑳𝟐(Ω')
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Coupling conditions

𝛀𝒇𝚪𝒊𝒏 𝚪𝒐𝒖𝒕

𝚪𝒃

𝚪

𝑭𝒆𝒙𝒕 Kinematic coupling condition
(continuity of velocities)

Dynamic coupling condition
(jump in internal and external loading on the structure)

where



Stochastic effects

𝛀𝒇𝚪𝒊𝒏 𝚪𝒐𝒖𝒕

𝚪𝒃

𝚪

𝑭𝒆𝒙𝒕

Let W(t) be a one-dimensional Brownian 
motion with respect to a probability space 
with complete* filtration

*        contains all null sets so the almost sure limit of 

measurable random variables is also        measurable. 

Dynamic coupling condition
(jump in internal and external loading on the structure)



A priori energy estimate

Apply Itô’s formula.

ENERGY

FLUID DISSIPATIONSTOCHASTICITY

FINAL ESTIMATE
(for C independent of T)



Solution space and test space



Solution space and test space
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Solution space and test space

FLUID

STRUCTURE



Definition of a solution



Definition of a solution

for all (deterministic) test functions in 



Definition of a solution

In the case where 

we interpret                                              as



Stochastic basis

A stochastic basis is an ordered collection, consisting of



Weak solution measurable with respect to new probability space



Strong solution

STRATEGY: Construct weak solution, use standard Gyöngy-Krylov theorem argument to return to original probability space

measurable with respect to original probability space



Main theorem



The splitting scheme

• Discretize in time, splitting the fluid, stochastic, and structure 
elements in the problem at each time step

• Fluid and structure splitting motivated by Muha and Čanić (2013)

• Stochastic splitting up method motivated by Bensoussan, Glowinski, 
Rǎşcanu (1992) 

𝑑𝑦 + 𝐴 𝑡, 𝑦 𝑑𝑡 = 𝐵 𝑡, 𝑦 𝑑𝑊
𝑑𝑦D + 𝐴 𝑡, 𝑦D 𝑑𝑡 = 0

𝑑𝑦E = 𝐵 𝑡, 𝑦E 𝑑𝑊

Solve on each time interval [𝑘Δ𝑡, 𝑘 + 1 Δ𝑡]

deterministic

stochastic



General scheme

Let Δ𝑡 = !
"
, 𝑡"# = 𝑛Δ𝑡. For each time step, iterate three subproblems.

At each step, 𝑛 = 0, 1, … , 𝑁 − 1 and 𝑖 = 1, 2, 3, keep track of 

and start the scheme with the initial data:

GOAL: Take the limit of approximate solutions as 𝑁 → ∞. 
This requires uniform bounds independent of 𝑁.



1. Structure subproblem
Update 𝜂#$

!
" and 𝑣#$

!
". . Keep

where we solve this system separately for each 𝜔 ∈ Ω.  .



Update.          . Keep 𝜂#$
#
" = 𝜂#$

!
" and 𝒖𝒏$

𝟐
𝟑 = 𝒖𝒏$

𝟏
𝟑.

2. Stochastic subproblem



3. Fluid subproblem
Update 𝒖𝒏$𝟏 and 𝑣#$'. Keep                       .  



3. Fluid subproblem

For all test functions

Update 𝒖𝒏$𝟏 and 𝑣#$'. Keep                       .  



Semidiscrete problem
The approximate solution satisfies the following semidiscrete problem:
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Semidiscrete problem
The approximate solution satisfies the following semidiscrete problem:

structure subproblem stochastic subproblem



Semidiscrete problem
The approximate solution satisfies the following semidiscrete problem:

structure subproblem stochastic subproblem fluid subproblem



Approximate solutions

Note that:

𝑇
𝑡

𝑇
𝑡



Discrete energy identities

kinetic and potential energy fluid dissipation



Discrete energy identities

kinetic and potential energy fluid dissipation

numerical dissipation stochastic contribution



Uniform energy estimate



Uniform boundedness



Passing to the limit
For all 



Passing to the limit
For all 

???
Only know that 𝜏()𝒖𝑵 converges to 𝒖 weakly in 

𝐿$ Ω; 𝐿$ 0, 𝑇; 𝐻" Ω'
**Need stronger form of convergence



General outline

• Use compactness arguments to obtain tightness of measures 
corresponding to approximate solutions.

• Use tightness to obtain weak convergence of probability measures.

• Use Skorokhod representation theorem to get almost sure 
convergence on a different probability space.

• Use Gyöngy-Krylov theorem argument to obtain almost sure 
convergence on original probability space.



Probability measures on phase space

One dimensional Brownian motion 𝑊J JKL with respect to 

𝐵 ⊂ 𝐿((0, 𝑇; 𝐿( Γ ), Borel measurable 𝜇)' 𝐵 = ℙ(𝜂* ∈ 𝐵)



Probability measures on phase space

One dimensional Brownian motion 𝑊J JKL with respect to 

𝐵 ⊂ 𝐿((0, 𝑇; 𝐿( Γ ), Borel measurable 𝜇)' 𝐵 = ℙ(𝜂* ∈ 𝐵)

GOAL: Show the measures 𝜇* are tight as probability measures on 𝒳



Compactness arguments

Probability measures {𝜇M}MKL on a Banach space 𝐵 are tight if for every 𝜖 > 0, there 
exists a compact set 𝐾 ⊂ 𝐵 such that 𝜇M 𝐾 ≥ 1 − 𝜖, for all 𝑛.



Compactness arguments

Why do we need compactness arguments?
For real-valued random variables {𝑋!}!"#, their laws are tight if 𝔼( 𝑋! $) ≤ 𝐶 uniformly in 𝑛 by 
Chebychev’s inequality and the fact that any closed ball in ℝ is compact. 

Probability measures {𝜇M}MKL on a Banach space 𝐵 are tight if for every 𝜖 > 0, there 
exists a compact set 𝐾 ⊂ 𝐵 such that 𝜇M 𝐾 ≥ 1 − 𝜖, for all 𝑛.



Compactness arguments

Why do we need compactness arguments?
For real-valued random variables {𝑋!}!"#, their laws are tight if 𝔼( 𝑋! $) ≤ 𝐶 uniformly in 𝑛 by 
Chebychev’s inequality and the fact that any closed ball in ℝ is compact. 

Probability measures {𝜇M}MKL on a Banach space 𝐵 are tight if for every 𝜖 > 0, there 
exists a compact set 𝐾 ⊂ 𝐵 such that 𝜇M 𝐾 ≥ 1 − 𝜖, for all 𝑛.

This is no longer true for general Banach spaces!
For example, 𝔼 𝑋! %

$ ≤ 𝐶 does NOT guarantee tightness because {𝒇 ∈ 𝑩; 𝒇 𝑩 ≤ 𝑹} is not compact in 𝑩.

Need to embed Banach space into weaker space via compact embedding.



Compactness: structure displacement

By Aubin-Lions compactness lemma:



Compactness: fluid and structure velocity

For 𝑅 > 0, let 𝒦N be the paths 𝒖𝑵 𝜔 , 𝑣P 𝜔 for which 𝜔 and 𝑁 satisfy:



Conclusion: The probability measures 𝜇* defined on 𝒳 are tight. 

Tightness result



Skorokhod representation theorem
weak convergence of 
probability measures

almost sure convergence of random variables on 
another probability space with equivalence of laws 



Skorokhod representation theorem
weak convergence of 
probability measures

almost sure convergence of random variables on 
another probability space with equivalence of laws 

Suppose that the probability measures 𝜇# #9: on a separable Banach space 
𝐵 converge weakly to a probability measure 𝜇. Then, there exists ;Ω, <ℱ, ;ℙ
and 𝐵-valued random variables 𝑋# and 𝑋 on this probability space such that 
𝑋# → 𝑋 almost surely, with laws given by 𝜇# and 𝜇, respectively. 



Skorokhod representation theorem
Suppose that the probability measures 𝜇! !"# on a separable Banach space 𝐵 converge weakly to a 
probability measure 𝜇. Then, there exists =Ω, @ℱ, =ℙ and 𝐵-valued random variables 𝑋! and 𝑋 on this 
probability space such that 𝑋! → 𝑋 almost surely, with laws given by 𝜇! and 𝜇, respectively. 



Weak solution
For all 𝒒, 𝜓 ∈ 𝒬 0, 𝑇 , 

For all 𝒒, 𝜓 ∈ 𝒬 0, 𝑇 , 



Towards a strong solution
• We want to bring the solution back to the original probability space.

• Use a Gyöngy-Krylov argument along with a uniqueness result.



Towards a strong solution
• We want to bring the solution back to the original probability space.

• Use a Gyöngy-Krylov argument along with a uniqueness result.

converges almost surely in the original topology along a subsequence



Gyöngy-Krylov argument

Define probability measures on 𝒳×𝒳:

We get almost sure convergence along a subsequence in the original topology 
on original probability space once we verify the diagonal condition:

tight and hence converge weakly 
along any subsequence to 𝜈



Gyöngy-Krylov argument

Given , verify



Gyöngy-Krylov argument

Given , verify

Use Skorokhod representation theorem to get 𝑋U! , 𝑋M! → 𝑋D, 𝑋E almost surely 
on a different probability space WΩ, Yℱ, Wℙ , where limit has law given by weak limit 𝜈.

Both 𝑋D and 𝑋E satisfy the linear stochastic problem. Diagonal condition follows 
from uniqueness in law of weak solution to linear stochastic problem since this 
implies that the laws of 𝑋D and 𝑋E are the same.



Main theorem



Significance of results
• Despite the very rough Brownian forcing, the stochastic fluid-structure 

interaction system still supports a solution

• The FSI model of time-dependent Stokes with the wave equation is robust under 
stochastic perturbations

• Provides a method for construction of solutions in stochastic PDEs that works 
well with fully coupled stochastic problems 

• Can be used as a basis for a numerical scheme for stochastic FSI

• Extension to moving boundary FSI problems with nonlinear coupling 


