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Fluid-structure interaction

* The coupled dynamical interaction between a viscous incompressible
fluid and a deformable structure

* Fully coupled problems are difficult: mixed parabolic-hyperbolic
system

* Two types of couplings: linear coupling (assume fixed fluid domain)
and nonlinear coupling



Literature review

Deterministic models of fluid-structure interaction

e with linear coupling (Du-Gunzburger-Hou-Lee '03, Barbu-Gruji¢-Lasiecka-Tuffaha '07 and
'08, Kukavica-Tufaha-Ziane '10, Kuan-Canic ‘21)

e with nonlinear coupling (Muha-Cani¢ '13, da Veiga '04, Lequeurre '11, Chambolle-
Desjardins-Esteban-Grandmont ’05)

Solutions of stochastic partial differential equations:

e Stochastic wave equations (Dalang-Frangos ‘98, Dalang ‘99, Karczewska-Zabcyk ‘99,
Conus-Dalang ‘08, Dalang-Sanz-Solé ‘09)

e Stochastic Navier-Stokes equation (Bensoussan-Temam ‘73, Capinski-Gatarek ‘94,
Flandoli-Gatarek ‘95)

e Stochastic one layer shallow water equations (Link-Nguyen-Temam ’17)

Not much past work on stochastic fluid-structure interaction



Stochastic fluid-structure interaction

Stochastic viscous wave equation (Kuan-Canié ‘21)
uy + vV —Auy — Au = W (dz,dt) in R"

STRUCTURE
U — Au = f




Stochastic fluid-structure interaction

Viscous nonlinear wave equation (Kuan-Cani¢ ’21 in Trans. AMS)

U + vV —Au — Au+uP =0, in R™

* Probabilistic local and global well-posedness of the deterministic viscous wave
equation with a power nonlinearity (Kuan-Canic’21 in Trans. AMS, Kuan-Oh 21)

* Existence of mild solution in dimensions one and two to stochastic viscous wave
equation and Holder regularity properties (Kuan-Canic ‘21)

* Local and global well-posedness for singular stochastic viscous nonlinear wave
equations (Liu-Oh ‘21)

GOAL: Extend existence results to fully coupled FSI.
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Description of the model
Qr =[0,L] X [0,R]
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Fm ﬂf l-‘O‘ut
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Q =[0,L] X [O,R
Structure subproblem ! 0K

Structure displacement: n(t, z)
(Assume displacement in only radial direction)

r L. o)

—L —
I‘in 'Q'f I‘out ﬂf(t)
— —
Iy
Mt — An = f, on I,
— —
n(0) = n(L) = 0.

Initial condition: n(t =0) =n, € H3(I), 91t =0) = v, € L*(T)



Fluid sub Pro blem Fluid velocity: u(t,z,7) = (uy(t,z,7),ur(t,2,1))

r

: L.. o

—> — >
I‘in 'Qf I‘out ﬂf(t)
—T> —p
Iy 8tu—,uAu—€.V5 = 8, } in
1 —” up =0,  on T UTou
P = Pin/out(t), on Ly, jout

Initial condition: u(t = 0) = uy € L? (Qf) Upi=10, Oy, = 0, on I'y



Coupling conditions

Kinematic coupling condition

r (continuity of velocities)
| |
—> —1, U = Ner, on I’
I‘in 'Q'f I‘out
Dynamic coupling condition
—_— g (jump in internal and external loading on the structure)
I'p

Nt — An = —oer - ep + Fegy, on T

where o = —pI 4+ 2uD(u)




Stochastic effects
Dynamic coupling condition
(jump in internal and external loading on the structure)

r Nit — AN = —oer - ep +|Feyy, on T

— > — Let W(t) be a one-dimensional Brownian

Lin 'Q'f out  motion with respect to a probability space
with complete* filtration (2, F, { F¢ }+>0, P)
— P —r

Fopt = W (2)
—1> —

* -Ft contains all null sets so the almost sure limit of

JFt measurable random variables is also F; measurable.



A priori energy estimate

i |
ENERGY / Vn2dz + / ofdz + / u2de
Qy

1 1 1
J 18 2 Gl 2 * 2 "
(2/PIV77I S 2/F|”| dz + 2 Jo, [ul d"’) Apply 1t6’s formula.

L
= | =—2u |D(u)|2da) -I—/ pudr —/ pudr | dt + (/ vdz) dW.
2 Qf Pi'n, Fout F

STOCHASTICITY FLUID DISSIPATION

FINAL ESTIMATE | & (max e / / |D<u)|2dm) < 0 (T + B©) + [1Pa®201) + 1Poue®l Bz

(for C independent of T) 0<i<T



Solution space and test space

1 1
E(t) ——/|Vn|2dz—|— /|v|2dz—|— ;/ u2de
Q

2
* (0%{‘%«]5@ +,u/ o | D(u)| dm) < C(T+E(O)+ || Pin (81172 2007) T |1 Po ut(t)]]72 (OT))

o [ D) s




Solution space and test space

1 1 |
E(t) = §/F|Vn|2dz—|—§/r|v|2dz+§/g u2da
f

t
E (Og%E(w T u / 5 |D<u>|2dw) < C (T +E©) + 1Pin(®) B0,z + |1 Poue Dl 2201 )

o [ D) s

FLUID Vr={u= (us,u,) € H(Q4)?*:V-u=0, u,=00n T, u, =0 on Q\I'}.

Wr(0,T) = L*(9; L®(0, T; L*(25))) N L*(Q; L*(0, T; Vr)).

STRUCTURE Vs = Hy(T).
Ws(0,T) = L*(Q; W*°(0, T; L*(T'))) N L*($; L™(0, T; Vs)).



Solution space and test space

1 1 |
E(t) = §/F|Vn|2dz—|—§/r|v|2dz+§/g u2da
f

&=

t
(O%ELS%E(t) -+ ,u/o " |D(u)|2dm) <C (T + E(0) + ||Pin(t)||%2(0,T) + ||Pout(t)||%2(0,T))

o [ D) s

FLUID Vr={u= (us,u,) € H(Q4)?*:V-u=0, u,=00n T, u, =0 on Q\I'}.

Wr(0,T) = L*(Q; L=(0, T; L*(25))) N L*(®; L*(0, T; Vr)).
STRUCTURE Vs = Ho(D).
Ws(0,T) = L?(S; WH(0, T; L*(T"))) N L2(Q; L*®(0, T; Vs)).
W(0,T) = {(u,n) € Wp(0,T) x Ws(0,T) : u|lr = nie, for almost every t € [0,T], a.s.}.

Q(0,T) = {(q,%) € C:([0,T); Vr x Vs) : q(t, 2, R) = 9(t, 2)er.}



Definition of a solution

ﬁtu

ntt T AT] o _aer ' er + Fea;t(t) on F
V-u
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Definition of a solution

6tu

ntt T AT] e _aer ' er + Fea;t(t) on F
V-u

OV,-O', } in

T /5 T T
—/ / u-@tqdmdt+2u/ / D(u) : D(q)d:z:dt—/ /8t178t¢dzdt+/ /Vn-Vzpdzdt
0o Jy 0o JOy O WAIE O T
T T
= / it ( / qzd'r) dt — / ottt ( / qzdr) dt
0 Fi 0 Fout

n

L /Q o q(0)dx + /F vy (0)dz + /0 ) ( A ¢dz) Feat(t)dt,

for all (deterministic) test functionsin Q(0,7") = {(q, %) € C('}([O,T); Ve X Vs) : q(t, 2z, R) = 9¢(t, 2)e,.}



Definition of a solution

T T T T
_ / / s B2 / D(u) : D(q)dzdt — / / BirOasaE / / Vn - Vopdzdt
0 Qrf 0 Qf 0 B 0 r
T T
= / Pt (/ qzd'r) dt —/ Eoui (L) (/ qzdr) dt
0 Fz’n 0 I‘out

+ /Q f uo - (0)dz + /F voy(0)dz + /0 : ( A ¢dz) Feat(t)dt,
Inthe case where  F,,(t) = W(t), /
we interpret -/OT (/F z/)dz) F..(t)dt,| as /OT (/F de) dW (t).




Stochastic basis

A stochastic basis is an ordered collection, consisting of

S = (Q,F,{Ft}>0,P, W),

where (2, F, P) is a probability space, { F; }+>0 is a complete filtration with respect to this probability

space, and W is a one-dimensional Brownian motion on the probability space with respect to the
filtration {F;}¢>0, meaning that

e W has continuous paths, almost surely,

e W is adapted to the filtration {F;}:>0,

o W(t)—W/(s) is independent of Fs for allt > s and W(t)—W(s) ~ N(0,t—s) forall0 < s < ¢.



We a k SO | u t | O n measurable with respect to new probability space

Definition 2.1. An ordered triple (5‘ ,u,1) is a weak solution in a probabilistically weak sense if
S = (Q, F, {Fi}t20,P, W),
is a stochastic basis and (u,7) € W(0,T) with paths almost surely in C(0,T; Q') satisfies:
e (@,7) is adapted to the filtration {F;};>0,

e 7(0) = no almost surely, and

e for all (q,v) € 9(0,7),

s /0 ! /ﬂ f w-0,qdxdt+24 /0 ! /Q fD(ﬁ) . D(q)dxdt— /0 ' /]P Oy iOpdzdt+ /O ' /F V- Vipdzdt
= /OT P (1) (/Fm qzd'r) dt — /OT Pous(t) (/Fm qzdr) dt
e /Q f uo - q(0)dx + /F vo(0)dz + /0 ' ( /F wdz> dw,

almost surely.



St FOnN g SO | U t | on measurable with respect to original probability space (€2, F, {F:}+>0, P)

Definition 2.2. An ordered pair (u,n) is a weak solution in a probabilistically strong sense if
(u,n) € W(0,T) with paths almost surely in C(0,T'; Q') satisfies:

e (u,n) is adapted to the filtration {F;}¢>0

e 7(0) = no almost surely, and
e for all (g,v) € Q(0,T),

—/OT /Qf w-Orqdzdt+2p /OT /Q, D(u) : D(q)dwdt—/OT/Famatwdzdt%—/oT/FVn-dezdt
= /OT Py, (t) </Fm qzdr) dt — /OT Pt (t) (/Fm qzdr> dt
+/qu0'(1(0)dm+/vo¢ / ([ viz) aw

almost surely.

STRATEGY: construct weak solution, use standard Gyéongy-Krylov theorem argument to return to original probability space



Main theorem

Theorem 2.1. Let ug € L*(y), vo € L*(T"), and ny € H}(T). Let Bt € L? (0,00) and let
(Q, F,P) be a probability space with a Brownian motion W with respect to a complete filtration
{Fi}t>0. Then, for any T' > 0, there exists a unique weak solution in a probabilistically strong
sense in the sense of Definition 2.2|to the given stochastic fluid-structure interaction problem.

Fext = W(t) Q'f - [O L] [O' R]

Qf(t)




The splitting scheme

* Discretize in time, splitting the fluid, stochastic, and structure
elements in the problem at each time step

* Fluid and structure splitting motivated by Muha and Cani¢ (2013)

 Stochastic splitting up method motivated by Bensoussan, Glowinski,
Rascanu (1992)

deterministic

| dy; +A(t,y1)dt =0

dy + A(t,y)dt = B(t,y)dW ———

| dy, = B(t,y,)dW

stochastic

Solve on each time interval [kAt, (k + 1)At]



General scheme

T . .
Let At = = ty = nAt. For each time step, iterate three subproblems.

(s

2 uN :

At eachstep,n =0,1,...,N —1andi =1, 2, 3, keep track of XK,+§ = ,UK;“%

o

NN
U
and start the scheme with the initial data: X% = [ v |, for all .

To

GOAL: Take the limit of approximate solutions as N — oo,
This requires uniform bounds independent of N.




1. Structure subproblem

1 1 1
Update 7_7n+3 and "3 Keepu" "3 = u”.

0"t — " 1
/ ddz = / V" T3 ¢ddz, for all ¢ € L2(I‘),
r At r

,vn+% — " 1 .
/ Yvdz + / V" t3 . Vidz =0, for all ¢ € Hy(T'),
r At r

where we solve this system separately for each w € (2.

Proposition 4.1. Suppose that n™ and v™ are F;» measurable random variables taking vlalues }n
H}(T') and L?(T') respectively. Then, the structure problem (18) has a unique solution (p™*3,v™*3)
that is a random variable taking values in H}(T') x H3(T') that is measurable with respect to Fyn.




2. Stochastic subproblem

— An = dW » ) =Y
et TI { VUt = A’I]+dW
2 L 2 1
Update v"’+§. Keep n"ts =0""3 and w5 = u"ts

w3 = o"ts 4 [W((n + 1)At) — W (nAt)).

Proposition 4.3. Suppose that v"3 is an JFi» measurable random variable taking values in H& ({15).

Then, v™*35 is an F;n+1 measurable random variable taking values in H!(T).




3. Fluid subproblem

Update ™! and v™+!. Keep n"*! = n™*5.

V = {(u,v) € Vg x L*(T") : u|r = ve,},
Ve ={u= (uzu,) € H'(Q4)*: V- u=0, u,=00n T, u, =0o0n Q;\I'}.

Q= {(q,%) € Vr x Hy(T) : glr = e, },



3. Fluid subproblem
Update u™! and v"*1. Keep "' = n"*s.

For all test functions (g, %) € Q,

n+§

un+1 . un+§ ,vn+1 —
.qdx + 2 / DY) : D dm+/ pdz
/Q f e q © " ( ) : D(q) . i

R R
— P?Z/ (qz)|z=0dr = P:ut/ (Qz)|z=Ldr)
0 0

pathwise for each outcome w € (), where

1 (’n.-}-l)At

Pijout = A3 /n .\ Py jout (t)dt.

Proposition 4.5. Suppose that w5 and v"t5 are Fin+1 measurable random variables taking

values in Vr and H'(T') respectively. Then, the fluid subproblem (21) has a unique solution
(w1, 0™ t1) that is an Fynt1 measurable random variable taking values in V.




Semidiscrete problem

The approximate solution satisfies the following semidiscrete problem:

n+1 n
/ A -qdx + 21
Qy Qf

/W n+ l)At — W(nAt)

n+1l __ um

D(un+1):D(q)daz+/Fv A7

R R
Ydz + P /0 (¢:)]s—odr — P2, /0 (¢2)|s=zdr,
for all (q,%) € Q,

vdz + / V"t . Vipdz
r

nn+1 . ,r,n 1
/ ddz = / V" 3¢dz, for all ¢ € L?(T),
r At r

where
1 (n+1)At

z'TrLL/out ~ At /nAt P’m/o’ut(t)dt-



Semidiscrete problem

The approximate solution satisfies the following semidiscrete problem:

un+1 um ,Un+1 —
/ -qdx + 21 D(u™*!) : D(q)dx + / Wdz + / Vntl . Vapdz
Q; Q; r At r

R R
/W n + 1)At) (nAt) PZ%/O (¢2)|s—o0dr — "“t/o (g2)|z=pdr;

for all (qa 'w) = Qa

nn+1 . nn 1
/ ddz = / V"3 0dz, for all ¢ € L?(T),
r At r

where
1 (n+ I)At

zT'rLL/out At LAt Pzn/out(t)dt'

structure subproblem



Semidiscrete problem

The approximate solution satisfies the following semidiscrete problem:

un—}-l —un n+1
/ .qdx +2u [ D(u™): D(q)dz /Vn"“ Vipdz
o At Q;

Ydz|+ Pz?:a Qz |z—0d7' Qz |z—Ld7'
0 0

for all (gq,7) € Q,

/W n+1)At)— W (nAt)

nn+1 . nn 1
/ pdz = / V" 3¢dz, for all ¢ € L*(T),
r At r

where
1 (n+1)At

structure subproblem stochastic subproblem



Semidiscrete problem

The approximate solution satisfies the following semidiscrete problem:

/W n+1)At)— WnAd)

R R
dz|H R%‘/O (Qz)|z=0d'r - glut /0 (QZ)|Z=Ldr’
for all (g,v) € Q,

nn+1 . nn 1
/ pdz = / V" 3¢dz, for all ¢ € L*(T),
r At r

where
1 (n+1)At

structure subproblem stochastic subproblem fluid subproblem




Approximate solutions

’U,N(t, ) = 'U'Rr_la

= g
nn(t,-) = 7717{,_1, (L, ) = 'UR',_I, (L) =y 8, for t € ((n — 1)At, nAt]
| i | T,N
 —
— - —
>t > ¢
T T
Ny (nAt) = 0y, uy(nAt) = uly, un (nAt) = vy, for #1-=10,;zx:5:IN.

Note that: 87y = vi.



Discrete energy identities

L 1 n+.i n-l—.i n+.1
== ( iy P+ oy ey + 19 3||%2(r)) Dyt! = (At)u /Q |D(upt!)Pda.
f f

kinetic and potential energy fluid dissipation




Discrete energy identities

n+i 1 n+ = 1 1y|2
Ey*®=5 |uy 3|2d-’13+ ||UN 3||L2(I‘) B “V??N ||L2(F) Dn+ = (At)p / |D(“Rz+ )|“de.
2 Qf 97
kinetic and potential energy fluid dissipation
numerical dissipation stochastic contribution

nt+i N + +
By 5 (I = obBa) + 5 (1977 = ViRl ) = B

Do

EK’+§ = En+3 + [W((n+1)At) — W(nAt)] /’UN 3dz + —[W((n +1)At) — W(nAt))?,

1 + = 1 +2
EnHl -I—zli(At)/Q ID(u™H)2de + = 5 (||un+1 Uy 3||2L2(Q,)> * = (||vn+1 vy 3||%2(P))
f

n+2 =
= "5 1 (At) ( / (w1, |,—odr — PP, / (unH), |z_Ldr).
0



Uniform energy estimate

1. Uniform semidiscrete kinetic energy and elastic energy estimate:

E n+% n+§
max Ey <C, E max Ey <C, and E max
n=0,1,...,N—1 n=0,1,...,N—1

2. Uniform semaidiscrete viscous fluid dissipation estimate:
N .
Y E(Dy) <C.
j=1

3. Uniform numerical dissipation estimate:

N-1
+3 . n +3 n
3 (E (nvf‘v P anizm) +E (nw’c _ VnNnizm)) <c

n=0

N-1
Y E(IlmtE - o) < O

n=0

N-1
+2 +2
> (B (Il - unHiBay) ) +E (I3 ~ o5 i) ) < €

ERF ) <.
n=0,1,....N—1



Uniform boundedness

Proposition 5.2. We have the following uniform boundedness results.
e (nn)nen is uniformly bounded in L?(2; L>°(0,T; Hj(T))).
e (vn)nen is uniformly bounded in L?(Q; L*=(0,T; L?(T"))) and L%(Q; L%(0, T; HY?(1))).
e (vi)nNen is uniformly bounded in L?(Q; L>=(0, T; L*(T))).
e (un)nen is uniformly bounded in L?(2; L°°(0,T; L%(€2f))) and L?(Q; L2(0,T; HX(Qy))).

Proposition 5.3. The sequence of linear interpolations of the structure displacements, (75 )nen,
is uniformly bounded in L?(2; L>°(0,T; H,(T'))) N L2(Q; W1°(0, T; L*(T))).



Passing to the limit
For all (q,v) € 9(0,T),

P P
/ 8tuN qdw+2u/ D(TAt’U,N) D(q )da:dt+/ /atﬂszdzdt
0

/ / V(ramy) - Vibdzdt = / / ((n+ ~WARRD, i
n=0 nA

+Z (n+1)At ( Nomodr — (n+1)At - (q it
0




Passing to the limit
For all (g,%) € 9(0,T),

4 & 11 J &
/ Jyuy - qdx + 2,u/ D(tauy) : D(q)dzdt +/ / oo NYdzdt
o Ja, 0o Jo,

T (n+1)At
4 /0 /F V(ramy) - Vibdzdt = / / ("+1)AA'2 WABAL) 10

(n+1)At (n+1)At
3 Z / / (¢2)|2= odr—/ / (¢2)|s=rdrdt
nAt

l Only know that Tp:uy converges to u weakly in
plrlr

12 (Q; 12(0,T; Hl(Qf))>

_/OT /Qf u-atqdwdHIZ# /OT 9 D(u) : D(q)d:z;dt|~/0T/Fatn8t¢dzdt+/0TAVn-V¢dzdt
- /0 " Pal®) ( /F q;;dr) dt — /0 " Poal®) ( fr qzdr) dt
+/Q uo.q(o)dm+/rv0¢(o dz+/ (/zpdz)
f

**Need stronger form of convergence




General outline

* Use compactness arguments to obtain tightness of measures
corresponding to approximate solutions.

e Use tightness to obtain weak convergence of probability measures.

* Use Skorokhod representation theorem to get almost sure
convergence on a different probability space.

* Use Gyongy-Krylov theorem argument to obtain almost sure
convergence on original probability space.



Probability measures on phase space

(Q, F, (Ft)t>0,P) One dimensional Brownian motion {W,}:o with respect to (F¢):>0

X = [L*(0,T; L*(T"))]? x [L*(0,T; L*(Q)) x L*(0,T; L*(T"))]* x C(0, T;R).

HEN = Hny X By X Huy X Hoy X Huy X Hoy, X Huay X Hoy X AW -

B c L?(0,T; L*(T)), Borel measurable Uyy(B) = P(ny € B)



Probability measures on phase space

(Q, I (.Ft)tzo, ]P’) One dimensional Brownian motion {W,};so with respect to (F¢)t>0

X = [L*(0,T; L*(T"))]? x [L*(0,T; L*(Q)) x L*(0,T; L*(T"))]* x C(0, T;R).

UN = Hnn X By X Buy X Hyy X Ry X Hu, X Hapy X Hoy X HW -

B c L?(0,T; L*(T")), Borel measurable Uyy(B) = P(ny € B)

GOAL: show the measures uy are tight as probability measures on X



Compactness arguments

Probability measures {u,,},,>0 On a Banach space B are tight if for every € > 0, there
exists a compact set K € B such that u,,(K) = 1 — ¢, for all n.



Compactness arguments

Probability measures {u,,},,>0 On a Banach space B are tight if for every € > 0, there
exists a compact set K € B such that u,,(K) = 1 — ¢, for all n.

Why do we need compactness arguments?

For real-valued random variables {X,},;>0, their laws are tight if E(|X,|?) < C uniformly in n by
Chebychev’s inequality and the fact that any closed ball in R is compact.



Compactness arguments

Probability measures {u,,},,>0 on a Banach space B are tight if for every € > 0, there
exists a compact set K € B such that u,,(K) = 1 — ¢, for all n.

Why do we need compactness arguments?

For real-valued random variables {X,},;>0, their laws are tight if E(|X,|?) < C uniformly in n by
Chebychev’s inequality and the fact that any closed ball in R is compact.

This is no longer true for general Banach spaces!
For example, E(||X,|3) < C does NOT guarantee tightness because {f € B; ||fllg < R} is not compact in B.

Need to embed Banach space into weaker space via compact embedding.



Compactness: structure displacement

X = [L*(0,T; L*(T))]? x [L?(0,T; L*(Q)) x L*(0,T; L*(T))]® x C(0, T;R).

UN = HUpyn X By X Puy X Ry X Hyy X .uv}"v X Py X Hoy X UW -

Proposition 5.3. The sequence of linear interpolations of the structure displacements, (75 )nen;
is uniformly bounded in L?(2; L°°(0,T; H, (")) N L?(Q; W1>=(0, T; L*(T))).

By Aubin-Lions compactness lemma:

Lemma 6.1. We have the following compact embedding.

[Whe°(0,T; L*(T)) N L*(0, T; Hy(T))] €C L(0, T; L*(T)),



Compactness: fluid and structure velocity

K = {(u,v) € L*(0,T; L*(Qy)) x L*(0, T; L*(T")) :
u = un(w) and v = vy (w) for some w € ) and N € N}.

For R > 0, let Kp be the paths (uN(a)), Un (a))) for which w and N satisfy:

|| (un, o)l 20,711 (@) x L2 0,71 /2 (1)) < R,

||77N||L°°(0,T;H3(p)) <

< 2
)3 /Q DGk e < R

Lemma 6.2. For any arbitrary positive constant R, the set Kg is precompact in EA0, T L9 £)) X (0 e (1))

N-1 2 N-1 il

=\ 3112 N = 2
2 , ||'U%+1 — Uy 3“L2(Qf) <R, Z U = UJT\LIHL?(F) <R,
n=0 n=0

o T
3 312
Doy * vy ?llZar) < R,

N-1 2
1 nT3 2
S It — vy 2|y < R.
n=>0 n=>0

t —
wp WOWEI
s,t€[0,T),s#t |t — s



Tightness result

X = [L*(0,T; L*(1")))? x [L*(0, T; L*(Q5)) x L*(0, T; L*(T"))]® x C(0, T;R).

UN = Hnn X By X Buy X By X Py X Moy, X Pay X Mgy X HW-

Conclusion: The probability measures py defined on X are tight.

|

Proposition 6.1. Along a subsequence (which we will continue to denote by N), uy converges
weakly as probability measures to a probability measure p on X.
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Skorokhod representation theorem

weak convergence of E almost sure convergence of random variables on
probability measures another probability space with equivalence of laws

Suppose that the probability measures {y, },,>o on a separable Banach space

B converge weakly to a probability measure u. Then, there exists (ﬁ, F, I’P‘S)
and B-valued random variables X,, and X on this probability space such that
X, — X almost surely, with laws given by u,, and u, respectively.



Skorokhod representation theorem

Suppose that the probability measures {y,, },,=¢9 on a separable Banach space B converge weakly to a
probability measure u. Then, there exists (ﬁ, F, I'PS) and B-valued random variables X,, and X on this
probability space such that X,, = X almost surely, with laws given by u,, and u, respectively.

Lemma 6.7. There exists a probability space ((2, F : lf”) and A’-valued random variables

oy o ~ s il R o A o~
(N, N UN, ON, Uy, VN, UN, UN, W), for each N,

such that
(AN N, N, TN, UN, U, N, UN, WN) =4 (N, TN, WN, UN, UN, VN, WN, UN, W),
for all N, and

(AN, N> UN, N, UN, ON, WN, ON, WN) — (7,7, @, D, u*,v*,u, v, W), a.s. in X, as N — oo.



Weak solution

Forall (q,¥) € Q(0,T),

T T T
/ dyuy - qdx + 2,“/ D(tasuy) : D(q)dxdt +/ /BﬁN@bdzdt
lf ]I

n+1)At
//me) Vedzdt — Z/ /WN n+1At WNnAt)wddt

(n+1)At (n+1)At
i E : / in/ (g2)] z=0d7’—/ Po'Lt/ () s=5.drdt

Forall (q,y) € Q(0,T),

/ /Q u-Orqdxdt+2pu / = D(a) : D(q)dxdt— / / OynOypdzdt+ / / Vi-Vipdzdt
f f
=/O (t)(/iqdr)dt /0 Pwt(t)(/ro qdr)dt
+/quo-q(0)da:+/voz/)(0 dz+/ (/dez>




Towards a strong solution

* We want to bring the solution back to the original probability space.

* Use a Gyongy-Krylov argument along with a uniqueness result.



Towards a strong solution

* We want to bring the solution back to the original probability space.

* Use a Gyongy-Krylov argument along with a uniqueness result.

Lemma 7.2 (Gyongy-Krylov lemma). Let {X,,}>°, be a sequence of random variables defined on
a probability space (€2, F,P) taking values in a Banach space B. For positive integers m and n,
define the joint probability measures v, , on B X B by

Vm,n(Al X A2) = ]P(Xm € A1>Xn S A?)

Suppose that the following diagonal condition holds: for any arbitrary subsequences {m}%>, and
{ni}p2,, there exists a further subsequence such that the joint probability laws vy, n, along this
subsequence as [ — oo converge weakly to a limiting probability measure v such that

v(A) =1,

where A = {(z,z) : z € B} denotes the diagonal of B x B. Then, X,, converges in probability to
some B-valued random variable X as n — oo.

converges almost surely in the original topology along a subsequence



Gyongy-Krylov argument

X = [L*(0,T; L*(T")))* x [L?(0,T; L*(Q)) x L*(0,T; L*(T"))]* x C(0, T;R).

UN = HUny X By X Puy X By X Py X Bk X By X Ry X BW -

Define probability measures on X XX: VMmN = Um X UN

tight and hence converge weakly
along any subsequence to v

We get almost sure convergence along a subsequence in the original topology
on original probability space once we verify the diagonal condition:

v({(z,z) :x € X}) = 1.



Gyongy-Krylov argument

X = [L*(0,T; L*(T")))* x [L?(0,T; L*(Q)) x L*(0,T; L*(T"))]* x C(0, T;R).

UN = HUny X By X Puy X By X Py X Bk X By X Ry X BW -

Given vm,N = pum X pn, verify v({(z,z) 1z € X}) = 1.



Gyongy-Krylov argument
X = [L*(0,T; L*(T)))* x [L*(0, T; L*(Q5)) x L*(0, T; L*(T))]® x C(0,T;R).

HN = Hny X By X Huy X Hoy X Buy X Boy, X Huy X Hoy X W -

Given vmN = pm X pn, verify v({(z,z) : x € X}) = 1.

Use Skorokhod representation theorem to get (ka,Xnk) — (X1, X,) almost surely
on a different probability space (Q, F, P) , where limit has law given by weak limit v.

Both X and X, satisfy the linear stochastic problem. Diagonal condition follows
from uniqueness in law of weak solution to linear stochastic problem since this

implies that the laws of X; and X, are the same.



Main theorem

Theorem 2.1. Let ug € LQ(Qf), vo € L*(T), and o € H}(T). Let Pipjous € L? (0,00) and
let (2, F,P) be a probability space with a Brownian motion W with respect to a given complete
filtration {Ft}+>0. Then, for any 7' > 0, there exists a unique weak solution in a probabilistically

strong sense in the sense of Definition 2.2

Fext = W(t) Q-f = [O; L

b vty

l-‘in (¢ f

to the given stochastic fluid-structure interaction problem.

X [0, R]
It
_>
Fout Q'f (t)
_>
_>



Significance of results

* Despite the very rough Brownian forcing, the stochastic fluid-structure
interaction system still supports a solution

The FSI model of time-dependent Stokes with the wave equation is robust under
stochastic perturbations

Provides a method for construction of solutions in stochastic PDEs that works
well with fully coupled stochastic problems

Can be used as a basis for a numerical scheme for stochastic FSI

Extension to moving boundary FSI problems with nonlinear coupling



