A stochastic fluid-structure interaction model given by a stochastic viscous wave equation in \mathbb{R}^2

Jeffrey Kuan (joint work with Sunčica Čanić)

UC Berkeley

April 12, 2021

1) Introduction and derivation of the equation

- 2 The concept of mild solution
- The stochastic viscous wave equation: an illustrative example
- 4 Existence and uniqueness
- 5 Hölder continuity path properties

1 Introduction and derivation of the equation

- 2 The concept of mild solution
- 3 The stochastic viscous wave equation: an illustrative example
- 4 Existence and uniqueness
- 5 Hölder continuity path properties

• Fluid-structure interaction (FSI): the coupled dynamical interaction between a fluid and an elastic or deformable solid structure.

- Fluid-structure interaction (FSI): the coupled dynamical interaction between a fluid and an elastic or deformable solid structure.
- What is the influence of the fluid viscosity on the structure?

- Fluid-structure interaction (FSI): the coupled dynamical interaction between a fluid and an elastic or deformable solid structure.
- What is the influence of the fluid viscosity on the structure?
- What is the influence of stochasticity on FSI?

- Fluid-structure interaction (FSI): the coupled dynamical interaction between a fluid and an elastic or deformable solid structure.
- What is the influence of the fluid viscosity on the structure?
- What is the influence of stochasticity on FSI?

Stochastic viscous wave equation

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = f(u)W(dx, dt)$$
 in \mathbb{R}^n ,

$$u(0,\cdot)=g(\cdot), \qquad u_t(0,\cdot)=h(\cdot)$$

W(dx, dt) denotes spacetime white noise, and $f : \mathbb{R} \to \mathbb{R}$ is a Lipschitz continuous function.

Kuan, Jeffrey (UC Berkeley) A stochastic fluid-structure interaction model

Derivation of equation: structure and fluid

• Structure subproblem: Infinite, prestressed, elastic membrane with reference configuration \mathbb{R}^2 .

$$u_{tt} - \Delta u = f$$
 on \mathbb{R}^2 .

• Fluid subproblem: Viscous, incompressible, Newtonian fluid.

$$\left. \begin{array}{ll} \nabla \pi &=& \mu \Delta \boldsymbol{v}, \\ \nabla \cdot \boldsymbol{v} &=& 0, \end{array} \right\} \quad \text{in } (z < 0).$$

Kuan, Jeffrey (UC Berkeley) A stochastic fluid-structure interaction model A

Derivation of equation: coupling conditions

• Kinematic coupling condition: Continuity of velocities at the interface \mathbb{R}^2 ,

$$oldsymbol{v} = rac{\partial u}{\partial t} oldsymbol{e}_{oldsymbol{z}}$$
 on \mathbb{R}^2 .

We assume displacement of the structure in only the z direction and linear coupling.

• Dynamic coupling condition: Balance of forces, fluid load on structure

$$u_{tt} - \Delta u = -\sigma \boldsymbol{e_z} \cdot \boldsymbol{e_z} + F_{ext}$$
 on \mathbb{R}^2 ,

where $\boldsymbol{\sigma} = -\pi \boldsymbol{I} + 2\mu \boldsymbol{D}(\boldsymbol{v})$.

Derivation of equation: dynamic coupling condition

$$u_{tt} - \Delta u = -\boldsymbol{\sigma} \boldsymbol{e}_{\boldsymbol{z}} \cdot \boldsymbol{e}_{\boldsymbol{z}} + F_{ext}$$
 on \mathbb{R}^2 .

Derivation of equation: dynamic coupling condition

$$u_{tt} - \Delta u = -\sigma \boldsymbol{e_z} \cdot \boldsymbol{e_z} + F_{ext}$$
 on \mathbb{R}^2 .

• Since $v_x = v_y = 0$ on $\Gamma = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$, by the divergence free condition,

$$-\boldsymbol{\sigma}\boldsymbol{e}_{\boldsymbol{z}}\cdot\boldsymbol{e}_{\boldsymbol{z}}|_{\boldsymbol{\Gamma}}=\pi-2\mu\frac{\partial\boldsymbol{v}_{\boldsymbol{z}}}{\partial\boldsymbol{z}}\Big|_{\boldsymbol{\Gamma}}=\pi|_{\boldsymbol{\Gamma}}.$$

Derivation of equation: dynamic coupling condition

$$u_{tt} - \Delta u = -\sigma \boldsymbol{e_z} \cdot \boldsymbol{e_z} + F_{ext}$$
 on \mathbb{R}^2 .

• Since $v_x = v_y = 0$ on $\Gamma = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$, by the divergence free condition,

$$-\boldsymbol{\sigma}\boldsymbol{e}_{\boldsymbol{z}}\cdot\boldsymbol{e}_{\boldsymbol{z}}|_{\boldsymbol{\Gamma}}=\pi-2\mu\frac{\partial\boldsymbol{v}_{\boldsymbol{z}}}{\partial\boldsymbol{z}}\Big|_{\boldsymbol{\Gamma}}=\pi|_{\boldsymbol{\Gamma}}.$$

• Goal: Calculate $\pi|_{\Gamma}$ in terms of u_t , from

$$egin{array}{rcl}
abla \pi &=& \mu \Delta oldsymbol{
u}, \
abla
abla \cdot oldsymbol{
u} &=& 0, \end{array}
ight\} \quad ext{in } (z < 0),$$

with $\boldsymbol{v} = u_t \boldsymbol{e}_{\boldsymbol{z}}$ on Γ .

$$\left\{ egin{array}{rcl}
abla \pi &=& \mu \Delta oldsymbol{v}, \
abla \nabla \cdot oldsymbol{v} &=& 0, \end{array}
ight\} \quad ext{in } (z < 0), \quad oldsymbol{v} = u_t oldsymbol{e}_z \ ext{ on } \Gamma. \end{array}$$

$$\left. \begin{array}{ll} \nabla \pi &=& \mu \Delta \boldsymbol{v}, \\ \nabla \cdot \boldsymbol{v} &=& 0, \end{array} \right\} \quad \text{in } (z < 0), \quad \boldsymbol{v} = u_t \boldsymbol{e_z} \ \text{ on } \Gamma. \end{array}$$

• π is harmonic in (z < 0) with Neumann boundary condition

$$\frac{\partial \pi}{\partial z}\Big|_{\Gamma} = \mu \Delta_{\mathbf{x}, \mathbf{y}} \mathbf{v}_{\mathbf{z}} + \mu \frac{\partial^2 \mathbf{v}_{\mathbf{z}}}{\partial z^2}\Big|_{\Gamma}$$

$$\left. \begin{array}{ll} \nabla \pi &=& \mu \Delta \boldsymbol{v}, \\ \nabla \cdot \boldsymbol{v} &=& 0, \end{array} \right\} \quad \text{in } (z < 0), \quad \boldsymbol{v} = u_t \boldsymbol{e_z} \ \text{ on } \Gamma. \end{array}$$

• π is harmonic in (z < 0) with Neumann boundary condition

$$\frac{\partial \pi}{\partial z}\Big|_{\Gamma} = \mu \Delta_{\mathbf{x}, \mathbf{y}} \mathbf{v}_{\mathbf{z}} + \mu \frac{\partial^2 \mathbf{v}_{\mathbf{z}}}{\partial z^2}\Big|_{\Gamma}.$$

• To find
$$v_z$$
, note $\Delta^2 v_z = 0$, $v_z|_{\Gamma} = u_t$, $\frac{\partial v_z}{\partial z}|_{\Gamma} = 0$.

$$\left. \begin{array}{ll} \nabla \pi &=& \mu \Delta \boldsymbol{v}, \\ \nabla \cdot \boldsymbol{v} &=& 0, \end{array} \right\} \quad \text{in } (z < 0), \quad \boldsymbol{v} = u_t \boldsymbol{e_z} \ \text{ on } \Gamma. \end{array}$$

• π is harmonic in (z < 0) with Neumann boundary condition

$$\frac{\partial \pi}{\partial z}\Big|_{\Gamma} = \mu \Delta_{x,y} v_z + \mu \frac{\partial^2 v_z}{\partial z^2}\Big|_{\Gamma}$$

• To find
$$v_z$$
, note $\Delta^2 v_z = 0$, $v_z|_{\Gamma} = u_t$, $\frac{\partial v_z}{\partial z}|_{\Gamma} = 0$.

• Take Fourier transform in x, y.

$$|\boldsymbol{\xi}|^4 \widehat{v_z}(\boldsymbol{\xi}, z) - 2|\boldsymbol{\xi}|^2 \frac{\partial^2}{\partial z^2} \widehat{v_z}(\boldsymbol{\xi}, z) + \frac{\partial^4}{\partial z^4} \widehat{v_z}(\boldsymbol{\xi}, z) = 0.$$

 $\widehat{v_z}(\xi,z) = C_1(\xi)e^{|\xi|z} + C_2(\xi)ze^{|\xi|z} + C_3(\xi)e^{-|\xi|z} + C_4(\xi)ze^{-|\xi|z}.$

$$\left. \begin{array}{ll} \nabla \pi &=& \mu \Delta \boldsymbol{\nu}, \\ \nabla \cdot \boldsymbol{\nu} &=& 0, \end{array} \right\} \quad \text{in } (z < 0), \quad \boldsymbol{\nu} = u_t \boldsymbol{e_z} \ \text{ on } \Gamma. \end{array}$$

• Use boundary conditions.

$$\widehat{v_z}(\boldsymbol{\xi}, z) = \widehat{u_t}(\boldsymbol{\xi})e^{|\boldsymbol{\xi}|z} - |\boldsymbol{\xi}|\widehat{u_t}(\boldsymbol{\xi})ze^{|\boldsymbol{\xi}|z}.$$

• Thus, π is harmonic with Neumann boundary condition

$$\frac{\partial \widehat{\pi}}{\partial z}\Big|_{\Gamma} = -\mu |\boldsymbol{\xi}|^2 \widehat{v_z} + \mu \frac{\partial^2 \widehat{v_z}}{\partial z^2}\Big|_{\Gamma} = -2\mu |\boldsymbol{\xi}|^2 \widehat{u_t}(\boldsymbol{\xi}).$$

• Dirichlet to Neumann operator on (z < 0) is $\sqrt{-\Delta}$. So Neumann to Dirichlet operator is $\frac{1}{|\mathcal{E}|}$ Fourier multiplier.

$$\widehat{\pi}|_{\Gamma} = -2\mu|\boldsymbol{\xi}|\widehat{u}_{t}(\boldsymbol{\xi}) \Longrightarrow -\boldsymbol{\sigma}\boldsymbol{e}_{\boldsymbol{z}} \cdot \boldsymbol{e}_{\boldsymbol{z}} = \pi|_{\Gamma} = -2\mu\sqrt{-\Delta}u_{t}.$$

Derivation of equation: Stochastic variation in external pressure

$$u_{tt} - \Delta u = -\sigma \boldsymbol{e_z} \cdot \boldsymbol{e_z} + F_{ext} \Longrightarrow u_{tt} + 2\mu \sqrt{-\Delta} u_t - \Delta u = F_{ext}.$$

In real-life FSI, small random deviations in pressure are observed in data. $F_{ext} = f(u)W(dx, dt) \Longrightarrow u_{tt} + 2\mu\sqrt{-\Delta}u_t - \Delta u = f(u)W(dx, dt).$

Summary of main results

Let n = 1 or n = 2. Let g, h be continuous functions in $H^2(\mathbb{R}^n)$, and let $f : \mathbb{R} \to \mathbb{R}$ be a Lipschitz continuous function.

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = f(u)W(dx, dt)$$
 in \mathbb{R}^n .

Theorem 1 (J.K., S. Čanić, '21)

There exists a unique function valued mild solution to the stochastic viscous wave equation with initial data u(0,x) = g(x), $\partial_t u(0,x) = h(x)$.

Theorem 2 (J.K., S. Čanić, '21)

Let n = 2. For each $\alpha \in [0, 1/2)$, the mild solution with initial data g, h has a modification that is (locally) α -Hölder continuous on $\mathbb{R}^+ \times \mathbb{R}^n$.

Summary of main results

Let n = 1 or n = 2. Let g, h be continuous functions in $H^2(\mathbb{R}^n)$, and let $f : \mathbb{R} \to \mathbb{R}$ be a Lipschitz continuous function.

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = f(u)W(dx, dt)$$
 in \mathbb{R}^n .

Theorem 1 (J.K., S. Čanić, '21)

There exists a unique function valued mild solution to the stochastic viscous wave equation with initial data u(0,x) = g(x), $\partial_t u(0,x) = h(x)$.

Theorem 2 (J.K., S. Čanić, '21)

Let n = 2. For each $\alpha \in [0, 1/2)$, the mild solution with initial data g, h has a modification that is (locally) α -Hölder continuous on $\mathbb{R}^+ \times \mathbb{R}^n$.

This is unlike stochastic heat and wave equations with spacetime white noise, which have function valued mild solution only in dimension one.

Kuan, Jeffrey (UC Berkeley) A stochastic fluid-structure interaction model

Viscous wave operator (Kuan-Čanić '20)

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u + u^p = 0$$

• Deterministically ill-posed for initial data in $H^{s}(\mathbb{R}^{n}) \times H^{s-1}(\mathbb{R}^{n})$ and $0 < s < s_{cr} = \frac{n}{2} - \frac{2}{p-1}$, since solution map is unbounded from

 $H^{s}(\mathbb{R}^{n})\times H^{s-1}(\mathbb{R}^{n})\to C([0,T];H^{s}(\mathbb{R}^{n}))\times C([0,T];H^{s-1}(\mathbb{R}^{n})).$

- Same critical exponent as NLWE (Christ-Colliander-Tao '03).
- After a randomization of arbitrary given initial data, the problem is "well-posed" with high probability.

J. Kuan and S. Canic. Deterministic ill-posedness and probabilistic well-posedness of the viscous nonlinear wave equation describing fluid-structure interaction. Transactions of the American Mathematical Society Accepted 2020.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• FSI: incompressible, viscous Newtonian fluid and an elastic structure

- Linear coupling (Du-Gunzburger-Hou-Lee '03, Barbu-Grujić-Lasiecka-Tuffaha '07 and '08, Kukavica-Tufaha-Ziane '10, Kuan-Čanić '21, and many more)
- Nonlinear coupling (Muha-Čanić '13, da Veiga '04, Lequeurre '11,

Chambolle-Desjardins-Esteban-Grandmont '05, and many more)

• FSI: incompressible, viscous Newtonian fluid and an elastic structure

- Linear coupling (Du-Gunzburger-Hou-Lee '03, Barbu-Grujić-Lasiecka-Tuffaha '07 and '08, Kukavica-Tufaha-Ziane '10, Kuan-Čanić '21, and many more)
- Nonlinear coupling (Muha-Čanić '13, da Veiga '04, Lequeurre '11,

Chambolle-Desjardins-Esteban-Grandmont '05, and many more)

• Spatially homogeneous Gaussian noise in higher dimensions for the heat and wave equations (Dalang-Frangos '98, Dalang '99, Karczewska-Zabcyzk '99)

• FSI: incompressible, viscous Newtonian fluid and an elastic structure

- Linear coupling (Du-Gunzburger-Hou-Lee '03, Barbu-Grujić-Lasiecka-Tuffaha '07 and '08, Kukavica-Tufaha-Ziane '10, Kuan-Čanić '21, and many more)
- Nonlinear coupling (Muha-Čanić '13, da Veiga '04, Lequeurre '11,

Chambolle-Desjardins-Esteban-Grandmont '05, and many more)

- Spatially homogeneous Gaussian noise in higher dimensions for the heat and wave equations (Dalang-Frangos '98, Dalang '99, Karczewska-Zabcyzk '99)
- Hölder continuity properties (Conus-Dalang '08, Dalang-Sanz-Solé '09, Sanz-Solé-Sarrà '02)
 - For n = 1, with spacetime white noise: heat equation (up to 1/4-Hölder in time, 1/2-Hölder in space) and wave equation (up to 1/2-Hölder in both time and space).

Introduction and derivation of the equation

2 The concept of mild solution

3) The stochastic viscous wave equation: an illustrative example

4 Existence and uniqueness

5 Hölder continuity path properties

Deterministic linear viscous wave equation

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = F, \quad \text{on } \mathbb{R}^n,$$

$$u(0, x) = 0, \quad \partial_t u(0, x) = 0.$$

By the Fourier transform,

$$\widehat{u}(t,\xi) = \int_0^t \widehat{F}(\tau,\xi) e^{-\frac{|\xi|}{2}(t-\tau)} \frac{\sin\left(\frac{\sqrt{3}}{2}|\xi|(t-\tau)\right)}{\frac{\sqrt{3}}{2}|\xi|} d\tau.$$

Define the convolution kernel,

$$\mathcal{K}_t(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} e^{-\frac{|\xi|}{2}t} \frac{\sin\left(\frac{\sqrt{3}}{2}|\xi|t\right)}{\frac{\sqrt{3}}{2}|\xi|} d\xi,$$

so therefore,

$$u(t,x) = \int_0^t \int_{\mathbb{R}^n} K_{t-s}(x-y)F(s,y)dsdy.$$

Main question:

How would we define a solution to the equation

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = f(u)W(dx, dt), \quad \text{on } \mathbb{R}^n,$$

 $u(0, x) = 0, \quad \partial_t u(0, x) = 0.$

Main question:

How would we define a solution to the equation

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = f(u)W(dx, dt), \quad \text{on } \mathbb{R}^n,$$

 $u(0, x) = 0, \quad \partial_t u(0, x) = 0.$

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, we formally want to say that u satisfies

$$u(t,x,\omega) = \int_0^t \int_{\mathbb{R}^n} K_{t-s}(x-y) f(u(s,y,\omega)) W(dy,ds).$$

Main question:

How would we define a solution to the equation

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = f(u)W(dx, dt), \quad \text{on } \mathbb{R}^n,$$

 $u(0, x) = 0, \quad \partial_t u(0, x) = 0.$

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, we formally want to say that u satisfies

$$u(t,x,\omega) = \int_0^t \int_{\mathbb{R}^n} K_{t-s}(x-y) f(u(s,y,\omega)) W(dy,ds).$$

An adapted, jointly measurable process $\{u(t, x, \omega)\}_{(t,x)\in\mathbb{R}^+\times\mathbb{R}^n}$ satisfying this, where this stochastic integral is well-defined, is a **mild solution**.

Spacetime white noise

 $\{W(A)\}_{A\in\mathcal{B}(\mathbb{R}^+ imes\mathbb{R}^n)}$ is a mean zero Gaussian process with covariance

 $\mathbb{E}(W(A)W(B)) = \lambda(A \cap B).$

- For Borel subsets $A_1, A_2, ..., A_k$, $(W(A_1), W(A_2), ..., W(A_k))$ is multivariate Gaussian.
- $W(A) \sim N(0, \lambda(A)).$
- If $A \cap B = \emptyset$, then W(A) and W(B) are independent Gaussians.
- For a given $A, B \in \mathcal{B}(\mathbb{R}^+ \times \mathbb{R}^n)$,

$$W(A \cup B) = W(A) + W(B) - W(A \cap B),$$
 a.s.

Define $W_t(A) = W([0, t] \times A)$ and consider the filtration

 $\mathcal{F}_t = \sigma(W_s(A), s \in [0, t], A \text{ bounded, in } \mathcal{B}(\mathbb{R}^+ \times \mathbb{R}^n)).$

Define $W_t(A) = W([0, t] \times A)$ and consider the filtration

 $\mathcal{F}_t = \sigma(W_s(A), s \in [0, t], A \text{ bounded, in } \mathcal{B}(\mathbb{R}^+ \times \mathbb{R}^n)).$

For $X \in \mathcal{F}_a$ and a bounded Borel set A, define for fixed but arbitrary $0 \le a < b$,

$$\int_0^t \int_{\mathbb{R}^n} X(\omega) \mathbb{1}_{(a,b]}(s) \mathbb{1}_A(x) W(dx,ds) = X(\omega) [W_{t \wedge b}(A) - W_{t \wedge a}(A)].$$

Extend by linearity to class of elementary integrands S.

Stochastic integration against white noise

For all $f \in \mathcal{S}$,

$$\mathbb{E}\left[\left(\int_0^{\infty}\int_{\mathbb{R}^n}f(t,x,\omega)W(dx,dt)\right)^2\right]=\mathbb{E}\left(\int_0^{\infty}\int_{\mathbb{R}^n}|f(t,x,\omega)|^2dxdt\right)$$

Stochastic integration against white noise

For all $f \in \mathcal{S}$,

$$\mathbb{E}\left[\left(\int_0^{\infty}\int_{\mathbb{R}^n}f(t,x,\omega)W(dx,dt)\right)^2\right]=\mathbb{E}\left(\int_0^{\infty}\int_{\mathbb{R}^n}|f(t,x,\omega)|^2dxdt\right)$$

Extend (by density) to a class \mathcal{P}_{W} of predictable integrands with norm

$$||f||_{\mathcal{P}_W}^2 := \mathbb{E}\left(\int_0^\infty \int_{\mathbb{R}^n} f(t,x,\omega)^2 dx dt\right) < \infty.$$

Stochastic integration against white noise

For all $f \in \mathcal{S}$,

$$\mathbb{E}\left[\left(\int_0^{\infty}\int_{\mathbb{R}^n}f(t,x,\omega)W(dx,dt)\right)^2\right]=\mathbb{E}\left(\int_0^{\infty}\int_{\mathbb{R}^n}|f(t,x,\omega)|^2dxdt\right)$$

Extend (by density) to a class \mathcal{P}_{W} of predictable integrands with norm

$$||f||_{\mathcal{P}_W}^2 := \mathbb{E}\left(\int_0^\infty \int_{\mathbb{R}^n} f(t,x,\omega)^2 dx dt\right) < \infty.$$

Main idea:

For appropriate (predictable) integrands, we can stochastically integrate if

$$\mathbb{E}\left(\int_0^\infty \int_{\mathbb{R}^n} |f(t,x,\omega)|^2 dx dt\right) < \infty.$$

< □ > < @ >

19/36

Introduction and derivation of the equation

2 The concept of mild solution

The stochastic viscous wave equation: an illustrative example

4 Existence and uniqueness

5 Hölder continuity path properties

Instead of considering the most general equation

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = f(u)W(dx, dt),$$
 on \mathbb{R}^n ,

we will consider the simplified model with zero initial data

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = W(dx, dt),$$
 on \mathbb{R}^n .

Instead of considering the most general equation

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = f(u)W(dx, dt),$$
 on \mathbb{R}^n ,

we will consider the simplified model with zero initial data

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = W(dx, dt),$$
 on \mathbb{R}^n .

This has a function-valued mild solution in **both** dimensions one and two, *unlike the corresponding stochastic heat and wave equations.*

21/36

Stochastic heat equation with additive noise

Consider

$$u_t - \Delta u = W(dx, dt),$$
 on \mathbb{R}^n ,

with zero initial data.

The mild solution (if it exists) is given explicitly as

$$u(t,x) = \int_0^t \int_{\mathbb{R}^n} K_{t-s}^H(x-y) W(ds,dy),$$

where

$$K_t^H(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} e^{-|\xi|^2 t} d\xi = \frac{1}{(4\pi t)^{n/2}} e^{-\frac{x^2}{4t}}.$$

Stochastic heat equation with additive noise

Consider

$$u_t - \Delta u = W(dx, dt),$$
 on \mathbb{R}^n ,

with zero initial data.

The mild solution (if it exists) is given explicitly as

$$u(t,x) = \int_0^t \int_{\mathbb{R}^n} K_{t-s}^H(x-y) W(ds, dy),$$

where

$$\mathcal{K}_t^H(x) = rac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} e^{-|\xi|^2 t} d\xi = rac{1}{(4\pi t)^{n/2}} e^{-rac{x^2}{4t}}.$$

For stochastic integral to be defined, we require

$$\int_0^t \int_{\mathbb{R}^n} |\mathcal{K}_{t-s}^H(x-y)|^2 dy ds < \infty.$$

For mild solution to be defined, $\int_0^t \int_{\mathbb{R}^n} |\mathcal{K}_{t-s}^H(x-y)|^2 dy ds < \infty$.

For mild solution to be defined, $\int_0^t \int_{\mathbb{R}^n} |\mathcal{K}_{t-s}^H(x-y)|^2 dy ds < \infty$.

$$\mathcal{K}^H_t(x) = t^{-rac{n}{2}} \mathcal{K}^H\left(rac{x}{t^{1/2}}
ight), ext{ where } \mathcal{K}^H(x) := \mathcal{K}^H_1(x).$$

Using this scaling property, we can rewrite the integrability condition as

$$\begin{split} \int_0^t \int_{\mathbb{R}^n} |\mathcal{K}_{t-s}^H(x-y)|^2 dy ds &= \int_0^t \int_{\mathbb{R}^n} (t-s)^{-n} \left| \mathcal{K}^H\left(\frac{x-y}{(t-s)^{1/2}}\right) \right|^2 dy ds \\ &= \left(\int_0^t (t-s)^{-n/2} ds \right) ||\mathcal{K}^H||_{L^2(\mathbb{R}^n)}^2 < \infty. \end{split}$$

Mild solution only in n = 1 due to spacetime scaling.

Stochastic wave equation with additive noise

Consider

$$u_{tt} - \Delta u = W(dx, dt),$$
 on \mathbb{R}^n ,

with zero initial data.

The mild solution (if it exists) is given explicitly as

$$u(t,x) = \int_0^t \int_{\mathbb{R}^n} K_{t-s}^W(x-y) W(ds,dy),$$

where

$$\mathcal{K}_t^W(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} \frac{\sin(|\xi|t)}{|\xi|} d\xi$$

Stochastic wave equation with additive noise

Consider

$$u_{tt} - \Delta u = W(dx, dt),$$
 on \mathbb{R}^n ,

with zero initial data.

The mild solution (if it exists) is given explicitly as

$$u(t,x) = \int_0^t \int_{\mathbb{R}^n} K_{t-s}^W(x-y) W(ds,dy),$$

where

$$K_t^W(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} \frac{\sin(|\xi|t)}{|\xi|} d\xi$$

For stochastic integral to be defined, we require

$$\int_0^t \int_{\mathbb{R}^n} |\mathcal{K}^W_{t-s}(x-y)|^2 dy ds < \infty.$$

Stochastic wave equation

$$K_t^W(x) = t^{1-n} K^W\left(rac{x}{t}
ight)$$
, where $K^W(x) := K_1^W(x)$.

Using this scaling property, we can rewrite the integrability condition as

$$\begin{split} \int_0^t \int_{\mathbb{R}^n} |\mathcal{K}_{t-s}^W(x-y)|^2 dy ds &= \int_0^t \int_{\mathbb{R}^n} (t-s)^{2-2n} \left| \mathcal{K}^W\left(\frac{x-y}{t-s}\right) \right|^2 dy ds \\ &= \left(\int_0^t (t-s)^{2-n} ds \right) ||\mathcal{K}^W||_{L^2(\mathbb{R}^n)}^2 < \infty. \end{split}$$

< (17) > < (27 >)

Stochastic wave equation

$$\mathcal{K}^{\mathcal{W}}_t(x) = t^{1-n} \mathcal{K}^{\mathcal{W}}\left(rac{x}{t}
ight), ext{ where } \mathcal{K}^{\mathcal{W}}(x) := \mathcal{K}^{\mathcal{W}}_1(x).$$

Using this scaling property, we can rewrite the integrability condition as

$$\begin{split} \int_0^t \int_{\mathbb{R}^n} |\mathcal{K}_{t-s}^W(x-y)|^2 dy ds &= \int_0^t \int_{\mathbb{R}^n} (t-s)^{2-2n} \left| \mathcal{K}^W\left(\frac{x-y}{t-s}\right) \right|^2 dy ds \\ &= \left(\int_0^t (t-s)^{2-n} ds \right) ||\mathcal{K}^W||_{L^2(\mathbb{R}^n)}^2 < \infty. \end{split}$$

Mild solution only in n = 1 due to lack of decay of fundamental solution.

$$\mathcal{K}_t^W(x) = rac{1}{2} \mathbbm{1}_{|x| < t}$$
 for $n = 1$,
 $\mathcal{K}_t^W(x) = rac{1}{\sqrt{2\pi}} rac{1}{\sqrt{t^2 - |x|^2}} \mathbbm{1}_{|x| < t}$ for $n = 2$.

Stochastic viscous wave equation with additive noise

Consider

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = W(dx, dt),$$
 on \mathbb{R}^n ,

with zero initial data.

The mild solution (if it exists) is given explicitly as

$$u(t,x) = \int_0^t \int_{\mathbb{R}^n} K_{t-s}(x-y) W(ds,dy),$$

where

$$\mathcal{K}_t(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} e^{-\frac{|\xi|}{2}t} \frac{\sin\left(\frac{\sqrt{3}}{2}|\xi|t\right)}{\frac{\sqrt{3}}{2}|\xi|} d\xi$$

Stochastic viscous wave equation with additive noise

Consider

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = W(dx, dt),$$
 on \mathbb{R}^n ,

with zero initial data.

The mild solution (if it exists) is given explicitly as

$$u(t,x) = \int_0^t \int_{\mathbb{R}^n} K_{t-s}(x-y)W(ds,dy),$$

where

$$K_t(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} e^{-\frac{|\xi|}{2}t} \frac{\sin\left(\frac{\sqrt{3}}{2}|\xi|t\right)}{\frac{\sqrt{3}}{2}|\xi|} d\xi$$

For stochastic integral to be defined, we require

$$\int_0^t \int_{\mathbb{R}^n} |\mathcal{K}_{t-s}(x-y)|^2 dy ds < \infty.$$

Same spacetime scaling as wave equation:

$$K_t(x) = t^{1-n}K\left(rac{x}{t}
ight)$$
, where $K(x) := K_1(x)$.

Using this scaling property (same as wave equation),

$$\int_0^t \int_{\mathbb{R}^n} |\mathcal{K}_{t-s}(x-y)|^2 dy ds = \left(\int_0^t (t-s)^{2-n} ds\right) ||\mathcal{K}||^2_{L^2(\mathbb{R}^n)} < \infty.$$

But unlike the wave equation, we have the following.

Lemma

For all
$$n \ge 1$$
 and for all $1 \le p \le \infty$, $K(x) \in L^p(\mathbb{R}^n)$.

 \implies Function valued mild solution in dimensions one and two.

27 / 36

A comparison of the various equations

Stochastic heat equation.

$$\int_0^t \int_{\mathbb{R}^n} |K_{t-s}^H(x-y)|^2 dy ds = \left(\int_0^t (t-s)^{-n/2} ds\right) ||K^H||_{L^2(\mathbb{R}^n)}^2.$$

Has $K^H \in L^2(\mathbb{R}^n)$ but undesirable spacetime scaling.

Stochastic wave equation.

$$\int_0^t \int_{\mathbb{R}^n} |K_{t-s}^W(x-y)|^2 dy ds = \left(\int_0^t (t-s)^{2-n} ds\right) ||K^W||_{L^2(\mathbb{R}^n)}^2.$$

Has desirable spacetime scaling but $K^W \notin L^2(\mathbb{R}^n)$ for $n \ge 2$.

Stochastic viscous wave equation.

$$\int_0^t \int_{\mathbb{R}^n} |K_{t-s}(x-y)|^2 dy ds = \left(\int_0^t (t-s)^{2-n} ds\right) ||K||_{L^2(\mathbb{R}^n)}^2.$$

Has both $K \in L^2(\mathbb{R}^n)$ and desirable spacetime scaling.

Introduction and derivation of the equation

2 The concept of mild solution

3 The stochastic viscous wave equation: an illustrative example

- 4 Existence and uniqueness
- 5 Hölder continuity path properties

Main result

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = f(u)W(dx, dt),$$
 in \mathbb{R}^n ,

with **deterministic** initial data u(0, x) = g(x) and $\partial_t u(0, x) = h(x)$.

In this case, a mild solution satisfies

$$u(t,x,\omega) = u_{free}(t,x) + \int_0^t \int_{\mathbb{R}^n} \mathcal{K}_{t-s}(x-y) f(u(s,y,\omega)) W(dy,ds)$$

Theorem 1 (J.K., S. Čanić, '21)

Let n = 1 or n = 2, and let g and h be continuous functions in $H^2(\mathbb{R}^n)$. Let $f : \mathbb{R} \to \mathbb{R}$ be a Lipschitz continuous function. Then, there exists a unique function valued mild solution to the equation

$$u_{tt} + \sqrt{-\Delta}u_t - \Delta u = f(u)W(dx, dt)$$
 on \mathbb{R}^n

with initial data u(0,x) = g(x), $\partial_t u(0,x) = h(x)$.

Proof sketch

• Picard iteration due to nonlinearity. First iterate u_0 is $u_{free}(t, x)$. Subsequent iterates are

$$u_n(t,x,\omega) = u_0(t,x) + \int_0^t \int_{\mathbb{R}^n} K_{t-s}(x-y) f(u_{n-1}(s,y,\omega)) W(dy,ds).$$

Proof sketch

• Picard iteration due to nonlinearity. First iterate u_0 is $u_{free}(t, x)$. Subsequent iterates are

$$u_n(t,x,\omega) = u_0(t,x) + \int_0^t \int_{\mathbb{R}^n} K_{t-s}(x-y) f(u_{n-1}(s,y,\omega)) W(dy,ds).$$

• Estimate the increments to show convergence. Define

$$H_k^2(t) := \sup_{0 \le s \le t, x \in \mathbb{R}^n} \mathbb{E}[(u_k - u_{k-1})^2(s, x, \omega)].$$

Proof sketch

• Picard iteration due to nonlinearity. First iterate u_0 is $u_{free}(t, x)$. Subsequent iterates are

$$u_n(t,x,\omega) = u_0(t,x) + \int_0^t \int_{\mathbb{R}^n} K_{t-s}(x-y) f(u_{n-1}(s,y,\omega)) W(dy,ds).$$

• Estimate the increments to show convergence. Define

$$H_k^2(t) := \sup_{0 \le s \le t, x \in \mathbb{R}^n} \mathbb{E}[(u_k - u_{k-1})^2(s, x, \omega)].$$

• Use the inductive inequality

$$H_k^2(t) \leq L^2 \int_0^t \int_{\mathbb{R}^n} K_{t-s}^2(x-y) H_{k-1}^2(s) dy ds$$

and use Gronwall to get convergence at each point in $L^2(\Omega)$ uniformly on bounded time intervals.

Kuan, Jeffrey (UC Berkeley) A stochastic fluid-structure interaction model

Introduction and derivation of the equation

- 2 The concept of mild solution
- 3 The stochastic viscous wave equation: an illustrative example
- 4 Existence and uniqueness
- 5 Hölder continuity path properties

$$\begin{split} u_{tt} + \sqrt{-\Delta}u_t - \Delta u &= f(u)W(dx, dt), & \text{in } \mathbb{R}^n, \\ \text{with deterministic initial data } u(0, x) &= g(x) \text{ and } \partial_t u(0, x) = h(x). \\ \{u(t, x, \omega)\}_{(t, x) \in \mathbb{R}_+ \times \mathbb{R}^n}. \text{ Then, } \{\tilde{u}(t, x, \omega)\}_{(t, x) \in \mathbb{R}_+ \times \mathbb{R}^n} \text{ is a modification if } \\ \mathbb{P}(\tilde{u}(t, x, \omega) = u(t, x, \omega)) = 1, & \text{ for all } (t, x) \in \mathbb{R}_+ \times \mathbb{R}^n. \end{split}$$

Observe that $(u(t_1, x_1, \omega), ..., u(t_k, x_k, \omega)) =_d (\tilde{u}(t_1, x_1, \omega), ..., \tilde{u}(t_k, x_k, \omega)).$

Theorem 2 (J.K., S. Čanić, '21)

Let n = 2. Let g, h be continuous functions in $H^2(\mathbb{R}^n)$, and let $f : \mathbb{R} \to \mathbb{R}$ be a Lipschitz continuous function. For each $\alpha \in [0, 1/2)$, the mild solution with initial data g, h has a **modification** that is (locally) α -Hölder continuous on $\mathbb{R}^+ \times \mathbb{R}^n$ in space and time.

Image: A math a math

Kolmogorov continuity theorem

Let $\{u(t, x, \omega)\}_{(t,x)\in\mathbb{R}^+\times\mathbb{R}^n,\omega\in\Omega}$ be a real-valued stochastic process. If there exist $\gamma, \epsilon > 0$ such that for each compact set $K \subset \mathbb{R}^+ \times \mathbb{R}^n$,

$$\begin{split} \mathbb{E}(|u(t,x,\omega)-u(s,y,\omega)|^{\gamma}) &\leq C_{\mathcal{K}}|(t,x)-(s,y)|^{n+1+\epsilon} \\ &\quad \text{for all } (t,x), (s,y) \in \mathcal{K}, \end{split}$$

then for each α such that

$$0 \le \alpha < \frac{\epsilon}{\gamma},$$

the stochastic process $\{u(t, x, \omega)\}_{(t,x)\in\mathbb{R}^+\times\mathbb{R}^n}$ has a modification that is locally α -Hölder continuous on $\mathbb{R}^+\times\mathbb{R}^n$.

Theorem 2 (J.K., S. Čanić, '21)

Let n = 2. Let g, h be continuous functions in $H^2(\mathbb{R}^n)$, and let $f : \mathbb{R} \to \mathbb{R}$ be a Lipschitz continuous function. For each $\alpha \in [0, 1/2)$, the mild solution to the stochastic viscous wave equation with initial data g, h has a modification that is (locally) α -Hölder continuous on $\mathbb{R}^+ \times \mathbb{R}^n$ in space and time.

By Kolmogorov continuity theorem, it suffices to estimate

$$\begin{split} \mathbb{E}(|u(t,x)-u(t',x)|^p) &\leq C_{\mathcal{T},p,\delta}|t-t'|^{\frac{\delta p}{2}}, \text{ for all } t,t' \in [0,T], \text{ and } x \in \mathbb{R}^2, \\ \mathbb{E}(|u(t,x')-u(t,x)|^p) &\leq C_{\mathcal{T},p,\delta}|x-x'|^{\frac{\delta p}{2}}, \text{ for all } t \in [0,T], \text{ and } x,x' \in \mathbb{R}^2, \\ \text{where } \mathcal{T} > 0, \ p \geq 2, \text{ and } \delta \in (0,1). \end{split}$$

Thank you! Any questions?

- (日)