Math 1A: Discussion 9/21/2018 Review Session

Jeffrey Kuan

September 21, 2018

Question 1

Find the domain of the function

$$
f(x)=\frac{\log \left(x^{2}-3 x+2\right)}{(\sin (x)+1)(\sin (x)+2)}
$$

Question 2

Calculate the following limit and carefully justify using the limits laws and continuity.

$$
\lim _{x \rightarrow 0} \sqrt{\frac{e^{x}+\arcsin (x)}{x^{2}+4}}
$$

Question 3

Calculate the following limit.

$$
\lim _{x \rightarrow 0} \arctan \left(x \cos \left(\frac{1}{\sqrt{x}}\right)\right)
$$

Question 4

Calculate the following limit.

$$
\lim _{h \rightarrow 0} \frac{\sqrt{\frac{1}{1+h^{2}}}-1}{h}
$$

Question 5

Evaluate the following quantities

$$
\begin{gathered}
\tan (\arccos (x)) \\
e^{4 \ln (\sqrt{3})-\ln (6)}
\end{gathered}
$$

Question 6

Consider the function

$$
\begin{gathered}
f(x)=2 x+1 \text { if } x \neq-1 \\
f(-1)=1
\end{gathered}
$$

Show using an $\epsilon-\delta$ proof that

$$
\lim _{x \rightarrow 1} f(x)=-1
$$

Consider the piecewise linear function $g(x)$ defined as

$$
\begin{aligned}
& g(x)=\frac{1}{2} x-1 \text { if } x \geq 0 \\
& g(x)=-2 x-1 \text { if } x<0
\end{aligned}
$$

Show using an $\epsilon-\delta$ proof that

$$
\lim _{x \rightarrow 0} g(x)=-1
$$

Question 7

Describe how to get the graph of $y=2 e^{x-2}+3$ from the graph of $y=\frac{1}{2} e^{x+2}$.

Question 8

Show that the function defined by

$$
\begin{gathered}
h(x)=x^{2} \sin \left(\frac{1}{x}\right) \text { if } x \neq 0 \\
h(0)=0
\end{gathered}
$$

is continuous at $x=0$. Is $h(x)$ also differentiable at $x=0$? (Use the definition of the derivative)

Question 9

Calculate the following limits, and justify your answers.

$$
\begin{gathered}
\lim _{x \rightarrow e^{-}} \frac{x^{2}}{(1-\ln (x))^{5}} \\
\lim _{x \rightarrow-\infty} \frac{e^{x}}{x^{2}+1} \\
\lim _{x \rightarrow \infty} \sqrt{x}-x
\end{gathered}
$$

