Math 54 Quiz 7 Study Guide

October 22, 2019

Note: Please review the last two study guides and the last quiz, since the material covered there can be tested on the upcoming quiz.

Conceptual Questions

- Show that the dimension of the left nullspace of an m by n matrix A is m minus the dimension of the column space.
- True or False: There is a real-valued matrix A that is diagonalizable over the complex numbers, but is not diagonalizable over the real numbers.
- True or False: The set of diagonalizable 3 by 3 matrices is a subspace.
- True or False: Every matrix has at least one real eigenvalue.
- Show that the only vector that is orthogonal to itself is the zero vector.
- True or False: The characteristic polynomial of a matrix is unchanged under row reduction.
- True or False: Similar matrices have the same characteristic polynomial. (Recall two matrices A and B are similar if there is an invertible matrix M such that $A=$ $\left.M B M^{-1}\right)$.
- Let W be a subspace of \mathbb{R}^{n}. What is $\left(W^{\perp}\right)^{\perp}$?

Problems

Problem 1

Suppose that for a matrix A,

$$
p(A)=0
$$

for $p(x)=(1-x)^{2}(2-x)$. Find two possibilities for such a matrix A, one that is diagonalizable, and one that is not.

Problem 2

The trace of a 3 by 3 matrix A is -1 , and its determinant is -8 . One of its eigenvalues is 1 . Is A diagonalizable over the real numbers? Is A diagonalizable over the complex numbers? Find all λ such that $\lim _{n \rightarrow \infty} \lambda^{n} A^{n}$ exists.

Problem 3

Find all possible real numbers a, b, and c such that the matrix

$$
A=\left[\begin{array}{lll}
1 & a & c \\
0 & 2 & 0 \\
0 & b & 1
\end{array}\right]
$$

is diagonalizable over the real numbers.

Problem 4

Let $W=\operatorname{span}\{(1,2,1,0),(-1,0,1,1)\}$. Find a basis for W^{\perp}.

Problem 5

Let a, b, c be real numbers that are not all zero. Let W be the subspace given by the plane $a x_{1}+b x_{2}+c x_{3}=0$ in \mathbb{R}^{3}. Find a basis for W^{\perp}.
(Hint: This problem can be done relatively quickly without calculations, by using the fact that $a x_{1}+b x_{2}+c x_{3}=\left\langle(a, b, c),\left(x_{1}, x_{2}, x_{3}\right)\right\rangle$. But you must justify why your resulting answer is a basis, perhaps by using some argument involving computation of dimensions.)

