Math 54 Quiz 6 Study Guide (Continued)

October 15, 2019

Conceptual Questions

- Show that every matrix of odd dimension has at least one real eigenvalue. (Hint: complex conjugates.) Show the same is not true for matrices of even dimension. (Hint: Consider the matrix $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$)
- Is every upper triangular matrix diagonalizable?
- True or False: Every matrix with repeated eigenvalues is not diagonalizable.
- Let A be a matrix whose entries in each row sum to the same number. (For example, $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 4 & 0 & 0 \\ -1 & 6 & -1\end{array}\right]$ is such a matrix.) Find an eigenvalue and eigenvector of A.
- Show that every 3 by 3 matrix with a non-real eigenvalue is diagonalizable over the complex numbers.

Problems

Problem 1

Are the following matrices diagonalizable over the real numbers? Over the complex numbers? If so, write them as $S D S^{-1}$ for a diagonal matrix D.

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & -1 & 0 \\
-1 & -2 & -1
\end{array}\right] \\
B=\left[\begin{array}{ccc}
1 & -3 & 0 \\
3 & -5 & 0 \\
0 & 0 & 1
\end{array}\right] \\
C=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & -1 & 0 \\
-1 & 0 & -1
\end{array}\right]
\end{gathered}
$$

Problem 2

Let A be a 3 by 3 matrix with trace 4 . Suppose you know that one of the eigenvalues is $1-2 i$. What is the determinant of A ? What is the characteristic polynomial of A ?

Problem 3

Consider the matrix

$$
M=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 0 \\
-1 / 2 & 0 & 1 / 2 \\
0 & 1 / 2 & 1 / 2
\end{array}\right]
$$

Diagonalize M. Does $\lim _{n \rightarrow \infty} M^{n}$ exist? If so, compute the value of the limit.

Problem 4

Consider the matrix A from Problem 1. Find all real numbers λ such that $\lim _{n \rightarrow \infty} \lambda^{n} A^{n}$ exists.

Problem 5

Suppose that A has eigenvectors $(1,1,0),(1,0,1)$, and $(0,1,-2)$ corresponding to eigenvalues $-1,0$, and 1 respectively. Compute $A^{2019}(10,15,19)$.

