Math 54 Quiz 6 Study Guide

October 8, 2019

Additional Reading and Practice: See Math N54 lecture notes on matrix multiplication and invertible matrices (June 28).

Conceptual Questions

- Show that 0 cannot be an eigenvalue of an invertible matrix.
- If λ is an eigenvalue of an invertible matrix A with eigenvector v (which is nonzero necessarily by the previous problem), find an eigenvalue and eigenvector of A^{-1}.
- If λ is an eigenvalue of the matrix A with eigenvector v, find an eigenvalue and eigenvector for A^{k} where k is any positive integer.
- Is every invertible matrix diagonalizable? (Hint: Look at Problem 1)
- Can a noninvertible matrix be diagonalizable?

Problems

Problem 1

Define the size k Jordan block with eigenvalue λ to be the matrix with λ along the main diagonal and ones on the diagonal immediately above the main diagonal. For example, the Jordan block with eigenvalue 3 of size 5 is

$$
\left[\begin{array}{lllll}
3 & 1 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0 \\
0 & 0 & 3 & 1 & 0 \\
0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

Find the characteristic polynomial and all eigenvalues (and their geometric multiplicity and algebraic multiplicity) of a size k Jordan block with eigenvalue λ.

Problem 2

Let A be an invertible matrix and let M be a square matrix of the same size.

- Find a formula for $\left(A M A^{-1}\right)^{k}$ where k is a positive integer.
- Show that $\operatorname{det}\left(A M A^{-1}\right)=\operatorname{det}(M)$
- Show that $\operatorname{char}_{A M A^{-1}}(x)=\operatorname{char}_{M}(x)$.

Problem 3

Find all eigenvalues and eigenvectors (with their geometric and algebraic multiplicities) of the following matrices.

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & 1 \\
0 & 0 & 3
\end{array}\right] \quad\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Problem 4

Find all k such that

$$
\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & k & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

is diagoalizable. For every possible value of k, find the eigenvalues and eigenvectors of the matrix above and their geometric and algebraic multiplicities.

