Math 54 Quiz 4 Study Guide

September 17, 2019

Additional Reading and Practice: See Math N54 lecture notes on matrix multiplication and invertible matrices (June 28).

Conceptual Questions

- Give an example of a surjective linear transformation from \mathbb{R}^{k} to \mathbb{R}^{n} where $n<k$. (Hint: restriction map)
- Give an example of an injective linear transformation from \mathbb{R}^{k} to \mathbb{R}^{n} where $n>k$. (Hint: inclusion map)
- Find an example of an isomorphism between \mathbb{R}^{n} and \mathbb{R}^{n}. Show that not every linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n} is an isomorphism.
- Explain why any linear transformation between Euclidean spaces of different dimensions cannot be an isomorphism.

Problems

Problem 1

Let T be a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
T(1,0)=(1,2,-1) \quad T(0,1)=(0,1,3)
$$

Find a matrix A such that $T(x)=A x$. Determine if T is injective, surjective, and an isomorphism.

Problem 2

Compute

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{2019}
$$

Problem 3

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation that rotates by 60° about the z axis. Find a matrix A such that $T(x)=A x$. Is T an isomorphism?

Problem 4

Find all vectors in the range of the linear transformation T_{A} defined by the matrix

$$
A=\left[\begin{array}{cccc}
2 & 1 & 1 & -1 \\
0 & 2 & 2 & 2 \\
1 & 3 & 3 & 2
\end{array}\right]
$$

Find all vectors in the kernel of T_{A}. Is T an injection, a surjection, an isomorphism?

Problem 5

Suppose that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation such that

$$
T(1,1,0)=(0,1,-1) \quad T(0,2,1)=(1,0,-1) \quad T(1,1,1)=(0,-1,-3)
$$

Find a matrix A such that $T(x)=A x$. Is T an isomorphism? If it is, find a formula for the inverse linear transformation.

Problem 6

A square matrix is called upper triangular if $a_{i j}=0$ if $i>j$. Show that any linear transformation defined by an upper triangular matrix with nonzero diagonal entries is an isomorphism.

Problem 7

Find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

and use the inverse of A to solve the system

$$
\begin{gathered}
x_{1}+2 x_{2}+x_{3}=2 \\
x_{2}+x_{3}=1 \\
x_{1}-x_{2}=3
\end{gathered}
$$

without row reducing.

