Math 54 Quiz 3 Study Guide

September 10, 2019

Additional Reading and Practice: See Math N54 lecture notes on Gaussian elimination (June 26, June 27) and Math N54 Midterm 1 Solutions, Problems 1e, 1h, 4a, 4b for worked out examples

Conceptual Questions

- Explain why if $k>n$, then k vectors cannot be linearly independent in \mathbb{R}^{n}.
- Explain why if $k<n$, then k vectors cannot span \mathbb{R}^{n}.
- Explain why any n linearly independent vectors in \mathbb{R}^{n} must be a basis for \mathbb{R}^{n}.
- Explain why any n vectors that span \mathbb{R}^{n} must be a basis for \mathbb{R}^{n}.
- True or false: If $v_{1}, v_{2}, \ldots, v_{k}$ are linearly dependent, then one vector must be a scalar multiple of the other.
- Explain why any basis for \mathbb{R}^{n} must have exactly n vectors. (Hint: Look at the first two conceptual questions.)

Problems

Problem 1

Show that the vectors $(1,2,1),(-1,0,-1),(0,-1,2)$, and $(-1,1,1)$ span \mathbb{R}^{3}. Write $(1,1,1)$ as a linear combination of these vectors.

Problem 2

Show that $(1,-1,2,1),(2,1,0,1)$, and $(0,1,1,1)$ are linearly independent in \mathbb{R}^{4}.

Problem 3

Show that the vectors $(1,-1,1),(-2,0,1)$, and $(2,1,-1)$ are a basis for \mathbb{R}^{3}.

Problem 4

Characterize all vectors (a, b, c, d) in $\operatorname{Span}\{(1,2,1,-1),(-1,0,2,1),(-1,2,5,1)\}$. Give an example of a vector in \mathbb{R}^{4} that is not in this span.

Problem 5

Show that if $v_{1}, v_{2}, \ldots, v_{k}$ is linearly dependent, then for any vector w, the set of vectors $v_{1}, v_{2}, \ldots, v_{k}, w$ is also linearly dependent.

Problem 6

Show that if $v_{1}, v_{2}, \ldots, v_{k}$ span \mathbb{R}^{n}, then so do $v_{1}, v_{2}, \ldots, v_{k}, w$ where w is any vector in \mathbb{R}^{n}.

Problem 7

Show however that if $v_{1}, v_{2}, \ldots, v_{n}$ are a basis for \mathbb{R}^{n}, then if w is any vector in \mathbb{R}^{n}, the set $\left\{v_{1}, v_{2}, \ldots, v_{n}, w\right\}$ is never a basis for \mathbb{R}^{n}.

Problem 8

Extend the linearly independent set $\{(1,2,1),(1,0,1)\}$ to a basis for \mathbb{R}^{3}.

