Math 54 Quiz 3 Study Guide

September 10, 2019

Additional Reading and Practice: See Math N54 lecture notes on Gaussian elimination (June 26, June 27) and Math N54 Midterm 1 Solutions, Problems 1e, 1h, 4a, 4b for worked out examples

Conceptual Questions

- Explain why if k > n, then k vectors cannot be linearly independent in \mathbb{R}^n .
- Explain why if k < n, then k vectors cannot span \mathbb{R}^n .
- Explain why any n linearly independent vectors in \mathbb{R}^n must be a basis for \mathbb{R}^n .
- Explain why any n vectors that span \mathbb{R}^n must be a basis for \mathbb{R}^n .
- True or false: If $v_1, v_2, ..., v_k$ are linearly dependent, then one vector must be a scalar multiple of the other.
- Explain why any basis for \mathbb{R}^n must have exactly *n* vectors. (Hint: Look at the first two conceptual questions.)

Problems

Problem 1

Show that the vectors (1, 2, 1), (-1, 0, -1), (0, -1, 2), and (-1, 1, 1) span \mathbb{R}^3 . Write (1, 1, 1) as a linear combination of these vectors.

Problem 2

Show that (1, -1, 2, 1), (2, 1, 0, 1), and (0, 1, 1, 1) are linearly independent in \mathbb{R}^4 .

Problem 3

Show that the vectors (1, -1, 1), (-2, 0, 1), and (2, 1, -1) are a basis for \mathbb{R}^3 .

Problem 4

Characterize all vectors (a, b, c, d) in Span $\{(1, 2, 1, -1), (-1, 0, 2, 1), (-1, 2, 5, 1)\}$. Give an example of a vector in \mathbb{R}^4 that is not in this span.

Problem 5

Show that if $v_1, v_2, ..., v_k$ is linearly dependent, then for any vector w, the set of vectors $v_1, v_2, ..., v_k, w$ is also linearly dependent.

Problem 6

Show that if $v_1, v_2, ..., v_k$ span \mathbb{R}^n , then so do $v_1, v_2, ..., v_k, w$ where w is any vector in \mathbb{R}^n .

Problem 7

Show however that if $v_1, v_2, ..., v_n$ are a basis for \mathbb{R}^n , then if w is any vector in \mathbb{R}^n , the set $\{v_1, v_2, ..., v_n, w\}$ is never a basis for \mathbb{R}^n .

Problem 8

Extend the linearly independent set $\{(1, 2, 1), (1, 0, 1)\}$ to a basis for \mathbb{R}^3 .