Math 1A: Discussion 9/5/2018 Solutions

Jeffrey Kuan

September 5, 2018

Problem Set 1

Question 1

$$
\begin{gathered}
16^{3 / 4}=\left(16^{1 / 4}\right)^{3}=2^{3}=8 \\
\frac{a^{3} b^{5}}{a^{4} b^{2}}=a^{3-4} b^{5-2}=a^{-1} b^{3}=\frac{b^{3}}{a} \\
\left(x^{2}\right)^{-2} x^{3}=x^{-4} x^{3}=x^{-1} \\
\left(x^{2} y z\right)^{-1} \cdot(2 x z)^{2}=x^{-2} y^{-1} z^{-1} \cdot 4 x^{2} z^{2}=4 x^{-2+2} y^{-1} z^{-1+2}=4 x^{0} y^{-1} z^{1}=\frac{4 z}{y} \\
\frac{(2 x)^{2} y^{3}}{(4 x)^{3 / 2}}=\frac{4 x^{2} y^{3}}{8 x^{3 / 2}}=\frac{1}{2} x^{2-3 / 2} y^{3}=\frac{1}{2} x^{1 / 2} y^{3}
\end{gathered}
$$

Question 2

To solve $2^{x+2}=\frac{1}{4}$, we note that $2^{-2}=\frac{1}{4}$, so that we are solving

$$
x+2=-2
$$

So $x=-4$.
Next, to solve $\left(\frac{1}{2}\right)^{2-x}=\frac{1}{16}$, we note that $\left(\frac{1}{2}\right)^{4}=\frac{1}{16}$, so we are solving

$$
2-x=4
$$

So $x=-2$.
Finally, to solve $3^{\left(x^{2}\right)}=\frac{1}{27}$, we note that $3^{-3}=\frac{1}{27}$, so we are solving $x^{2}=-3$. But this has no solutions since x^{2} is nonnegative for all x. So this equation has no solution.

Question 3

For $(3,1)$ and $(5,4)$, we have that

$$
\begin{aligned}
& 1=A r^{3} \\
& 4=A r^{5}
\end{aligned}
$$

Dividing, we have that

$$
r^{2}=\frac{A r^{5}}{A r^{3}}=\frac{4}{1}=4
$$

Since r is nonnegative, we have that $r=2$. Then, $1=A(2)^{3}$, so $A=1 / 8$. So the equation is

$$
y=\frac{1}{8} 2^{x}
$$

For $\left(-2, \frac{1}{2}\right)$ and $\left(2, \frac{1}{32}\right)$, we have that

$$
\begin{aligned}
& \frac{1}{32}=A r^{2} \\
& \frac{1}{2}=A r^{-2}
\end{aligned}
$$

Dividing, we have that

$$
r^{4}=\frac{A r^{2}}{A r^{-2}}=\frac{1 / 32}{1 / 2}=\frac{1}{16}
$$

So since r is nonnegative, we have that $r=1 / 2$. Using the first equation, $1 / 32=A(1 / 2)^{2}$, so that $A=1 / 8$. So we have that

$$
y=\frac{1}{8}\left(\frac{1}{2}\right)^{x}
$$

Finally, for $\left(2,-\frac{1}{3}\right)$ and $(5,-9)$, we have that

$$
\begin{aligned}
-\frac{1}{3} & =A r^{2} \\
-9 & =A r^{5}
\end{aligned}
$$

Dividing, we have that

$$
r^{3}=\frac{A r^{5}}{A r^{2}}=\frac{-9}{-1 / 3}=27
$$

So $r=3$. Using the first equation, $-1 / 3=A(3)^{2}$, so that $A=-1 / 27$. So the equation is

$$
y=-\frac{1}{27} \cdot 3^{x}
$$

Problem Set 2

Question 4

For the first part, we have that

$$
(f \circ g)(x)=f(g(x))=\frac{3}{e^{x}-1}
$$

The domain of f is $x \neq 1$. So to find the domain of the composite $f \circ g$ we look for values of x with $g(x)=1$. The only such value where $e^{x}=1$ is $x=0$. So the domain is $x \neq 0$, which can also be expressed as $(-\infty, 0) \cup(0, \infty)$.

For the second part, the composite function is

$$
(f \circ g)(x)=\sqrt{2(x+1)-3}=\sqrt{2 x-1}
$$

The domain of f is $x \geq 3 / 2$. So we want to find values of x for which $g(x) \geq 3 / 2$. We can easily see that $x+1 \geq 3 / 2$ when $x \geq 1 / 2$. So the domain is $x \geq 1 / 2$, which can also be expressed as $[1 / 2, \infty$) (which can also be seen directly from the expression for $f \circ g$).

For the last part, we have that the composite function is

$$
(f \circ g)(x)=\frac{1}{2\left(2^{|x|}\right)^{2}-5\left(2^{|x|}\right)+2}=\frac{1}{2\left(2^{2|x|}\right)-5\left(2^{|x|}\right)+2}
$$

Factoring the denominator of f as $(2 x-1)(x-2)$, we see that the domain of f is $x \neq 1 / 2, x \neq 2$. So we are solving $2^{|x|}=1 / 2$ and $2^{|x|}=2$.

We note that $2^{-1}=1 / 2$, so since $|x|$ can never be equal to -1 , we have that $2^{|x|}=1 / 2$ has no solutions. To solve $2^{|x|}=2$, we note that $2^{1}=2$, so we have that the solutions are $x=-1,1$.

So the domain of $f \circ g$ is $x \neq-1,1$, which can also be expressed as $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$.

Question 5

For the graphs of these functions, see the images on the website.
From the graph of the function f, we see that f passes the Horizontal Line Test. To find the inverse of f, reverse x and y and solve for y.

$$
\begin{gathered}
x=2 y^{3}+3 \\
x-3=2 y^{3} \\
y^{3}=\frac{x-3}{2} \\
y=f^{-1}(x)=\sqrt[3]{\frac{x-3}{2}}
\end{gathered}
$$

From the graph of the function g, we find that g passes the Horizontal Line Test. To find the inverse of g, reverse x and y and solve for y.

$$
\begin{aligned}
& x=-\frac{1}{2}(y-1)^{5}+2 \\
& x-2=-\frac{1}{2}(y-1)^{5} \\
& -2(x-2)=(y-1)^{5} \\
& y-1=\sqrt[5]{-2(x-2)} \\
& y=1+\sqrt[5]{-2 x+4}
\end{aligned}
$$

Finally, h does not have an inverse because it does not pass the Horizontal Line Test.

Question 6

We note that

$$
f(1)=\frac{1}{3}(1-1)^{7}+2=2
$$

so that $f^{-1}(2)=1$.
To find an expression for f^{-1}, we switch x and y and solve for y.

$$
x=\frac{1}{3}(y-1)^{7}+2
$$

$$
\begin{gathered}
\frac{1}{3}(y-1)^{7}=x-2 \\
(y-1)^{7}=3 x-6 \\
y-1=\sqrt[7]{3 x-6} \\
f^{-1}(x)=y=1+\sqrt[7]{3 x-6}
\end{gathered}
$$

Next, we consider

$$
f(x)=\frac{x+3}{2 x+1}
$$

To find $f^{-1}(2)$, we solve the equation

$$
\begin{gathered}
\frac{x+3}{2 x+1}=2 \\
x+3=4 x+2 \\
3 x=1 \\
x=1 / 3
\end{gathered}
$$

So we have that $f^{-1}(2)=1 / 3$.
To find f^{-1}, we switch x and y and solve for y.

$$
\begin{gathered}
x=\frac{y+3}{2 y+1} \\
2 x y+x=y+3
\end{gathered}
$$

This is harder to solve for y. Move everything with a y in it to one side and factor out y to isolate it.

$$
\begin{gathered}
2 x y-y=3-x \\
y(2 x-1)=3-x
\end{gathered}
$$

Dividing both sides by $2 x-1$, we have that

$$
f^{-1}(x)=y=\frac{3-x}{2 x-1}
$$

Problem Set 3

Question 7

See images on website.

