Math 1A: Discussion 9/28/2018 Solutions

Jeffrey Kuan

September 28, 2018

Problem Set 1

Question 1

We calculate

$$
f^{\prime}(x)=4 x^{3}+1+e^{x}
$$

So then

$$
f^{\prime}(0)=2
$$

Because $f(0)=1$, we have that the tangent line at $x=0$ has slope 2 and passes through $(0,1)$. So the equation of the tangent line is

$$
y=2 x+1
$$

The slope of the normal line is $-1 / 2$ (the negative reciprocal of the slope of the tangent line). The normal line passes through $(0,1)$. So the equation of the normal line is

$$
y=-\frac{1}{2} x+1
$$

Problem Set 2

Question 2

First, consider $y=e^{-2 x}+x$. We have that

$$
\begin{aligned}
& y^{\prime}=\lim _{h \rightarrow 0} \frac{e^{-2 x-2 h}+x+h-e^{-2 x}-x}{h}=\lim _{h \rightarrow 0} \frac{e^{-2 x-2 h}-e^{-2 x}+h}{h} \\
&=\lim _{h \rightarrow 0} \frac{e^{-2 x-2 h}-e^{-2 x}}{h}+\frac{h}{h}=1+e^{-2 x} \cdot \lim _{h \rightarrow 0} \frac{e^{-2 h}-1}{h} \\
&=1-2 e^{-2 x} \cdot \lim _{h \rightarrow 0} \frac{e^{-2 h}-1}{-2 h}=1-2 e^{-2 x} \cdot \lim _{u \rightarrow 0} \frac{e^{u}-1}{u} \\
&=1-2 e^{-2 x}
\end{aligned}
$$

where we set $u=-2 h$ and noted that as $h \rightarrow 0$, we have that u also goes to 0 . So the derivative here is

$$
y^{\prime}=1-2 e^{-2 x}
$$

Next, consider $y=3^{x}-3$. We have that

$$
\begin{array}{r}
y^{\prime}=\lim _{h \rightarrow 0} \frac{3^{x+h}-3-\left(3^{x}-3\right)}{h}=\lim _{h \rightarrow 0} \frac{3^{x+h}-3^{x}}{h}=3^{x} \cdot \lim _{h \rightarrow 0} \frac{3^{h}-1}{h} \\
=\lim _{h \rightarrow 0} 3^{x} \cdot \lim _{h \rightarrow 0} \frac{\left(e^{\ln (3)}\right)^{h}-1}{h}=\lim _{h \rightarrow 0} 3^{x} \cdot \lim _{h \rightarrow 0} \frac{e^{h \cdot \ln (3)}-1}{h} \\
=\ln (3) \cdot 3^{x} \cdot \lim _{h \rightarrow 0} \frac{e^{h \cdot \ln (3)}-1}{h \cdot \ln (3)}=\ln (3) \cdot 3^{x} \cdot \lim _{u \rightarrow 0} \frac{e^{u}-1}{u} \\
=\ln (3) \cdot 3^{x}
\end{array}
$$

where we set $u=h \cdot \ln (3)$ and note that $u \rightarrow 0$ has $h \rightarrow 0$.

Question 3

For $f(x)=\frac{1}{2} e^{2 x}$ and $g(x)=5 e^{x}-4 x$, we compute

$$
\begin{gathered}
f^{\prime}(x)=e^{2 x} \\
g^{\prime}(x)=5 e^{x}-4
\end{gathered}
$$

So we want to solve the equation

$$
e^{2 x}=5 e^{x}-4
$$

This is the same as

$$
e^{2 x}-5 e^{x}+4=0
$$

Setting $y=e^{x}$, this is the same as

$$
\begin{gathered}
y^{2}-5 y+4=0 \\
(y-1)(y-4)=0
\end{gathered}
$$

So $y=1$ or $y=4$. Since $y=e^{x}$, we have that $e^{x}=1$ or $e^{x}=4$. So then, $x=0$ or $x=\ln (4)$. So for $a=0$ and $a=\ln (4)$, the tangent lines to f and g at $x=a$ have the same slope.

Problem Set 3

Question 4 (*)

We first need the function to be continuous. So using continuity at $x=1$, we have that

$$
a e^{1-1}+2 b \sqrt{1}=b(1)^{3}+2
$$

since the left and right hand limits must be the same. So we have that

$$
a+2 b=b+2
$$

and hence $a+b=2$.
Next, for differentiability, we need the left and right hand derivatives to be the same. The left hand derivative at $x=1$ is

$$
a e^{x-1}+\frac{b}{\sqrt{x}}
$$

evaluated at $x=1$, which is just $a+b$. The right hand derivative at $x=1$ is

$$
3 b x^{2}
$$

evaluated at $x=1$, which is just $3 b$. So then,

$$
a+b=3 b
$$

for the function to be differentiable at $x=1$. So we have that $a=2 b$.
Solving $a+b=2$ and $a=2 b$, we have that

$$
\begin{aligned}
a & =\frac{4}{3} \\
b & =\frac{2}{3}
\end{aligned}
$$

Question 5

- A function $f(x)$ such that $f^{\prime}(x)=f(x)$ is $f(x)=e^{x}$.
- Two functions such that $f^{\prime \prime}(x)=f(x)$ are $y=e^{x}$ and $y=e^{-x}$.
- Try a solution of the form $y=e^{\lambda x}$. Then, $y^{\prime}=\lambda e^{\lambda x}$ and $y^{\prime \prime}=\lambda^{2} e^{\lambda x}$. So then, using $y=e^{\lambda x}$, we would have to have that

$$
\left(\lambda^{2}-\lambda-6\right) e^{\lambda x}=0
$$

so that $\lambda^{2}-\lambda-6=0$, or $(\lambda-3)(\lambda+2)=0$, so that $\lambda=3$ or $\lambda=-2$. So two solutions are

$$
\begin{gathered}
y=e^{3 x} \\
y=e^{-2 x}
\end{gathered}
$$

- A general process is to guess a solution of the form $y=e^{\lambda x}$. The solutions that will work are the solutions with λ satisfying

$$
\lambda^{2}+a \lambda+b=0
$$

But this process only works if we have real solutions to this equation. If we have complex solutions, then this will not work. For example, to solve $f^{\prime \prime}(x)+f(x)=0$ using this way, we would need to solve

$$
\lambda^{2}+1=0
$$

which has no real solutions. The solutions to $f^{\prime \prime}(x)+f(x)=0$ actually turn out to be $\sin (x)$ and $\cos (x)$ (and their linear combinations).

