Math 1A: Discussion 9/28/2018 Problems

Jeffrey Kuan

September 28, 2018

Problem Set 1

Question 1

Find the equation of the tangent line and the normal line to the graph of

$$
f(x)=x^{4}+x+e^{x}
$$

at $x=0$.

Problem Set 2

Question 2

Use the fact that

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

and the definition of the derivative to find the derivative of the following functions

$$
\begin{gathered}
y=e^{-2 x}+x \\
y=3^{x}-3
\end{gathered}
$$

Question 3

Is there a point $x=a$ such that the tangent line to $f(x)=\frac{1}{2} e^{2 x}$ and $g(x)=5 e^{x}-4 x$ at $x=a$ have the same slope?

Problem Set 3

Question $4\left(^{*}\right)$

Consider the function

$$
\begin{gathered}
f(x)=a e^{x-1}+2 b \sqrt{x} \text { for } x \geq 1 \\
f(x)=b x^{3}+2 \text { for } x<1
\end{gathered}
$$

What values of a and b make the function $f(x)$ differentiable at $x=1$? (Hint: Start by making $f(x)$ continuous at $x=1$, because for $f(x)$ to be differentiable at $x=1$, it needs to be continuous at $x=1$ first)

Question 5 (*)

Note that we can iterate the process of taking derivatives. Since $f^{\prime}(x)$ is a function, we can take its derivative to get what is called the second derivative $f^{\prime \prime}(x)$.

- What is a function $f(x)$ such that $f^{\prime}(x)=f(x)$?
- Find two functions $f(x)$ that are not multiples of each other such that $f^{\prime \prime}(x)=$ $f(x)$.
- Find two functions $f(x)$ that are not multiples of each other such that

$$
f^{\prime \prime}(x)-f^{\prime}(x)-6 f(x)=0
$$

- Explain a general process you can use to find a function $f(x)$ such that

$$
f^{\prime \prime}(x)+a f^{\prime}(x)+b f(x)=0
$$

Does your process always work? It probably doesn't - to see this, try to use it to find a solution to the equation

$$
f^{\prime \prime}(x)+f(x)=0
$$

What goes wrong?

