Math 1A: Discussion 9/26/2018 Solutions

Jeffrey Kuan

September 26, 2018

Question 1

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}+1}}{x+3}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{4 x^{2}+1}}{x}}{\frac{x+3}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{4 x^{2}+1}{x^{2}}}}{\frac{x+3}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{4+\frac{1}{x^{2}}}}{1+\frac{3}{x}}=\frac{\sqrt{4}}{1}=2 \\
\lim _{x \rightarrow-\infty}\left[2 \ln (x+1)-\ln \left(x^{2}\right)\right]=\lim _{x \rightarrow-\infty} \ln \left(\frac{(x+1)^{2}}{x^{2}}\right)=\ln (1)=0
\end{gathered}
$$

For the final limit, we note that

$$
\lim _{x \rightarrow-\infty} \frac{2}{\sqrt{x}}=0
$$

so then

$$
\lim _{x \rightarrow \infty}\left[3 \cos (x)-\frac{2}{\sqrt{x}}\right]=\lim _{x \rightarrow \infty} 3 \cos (x)
$$

and hence this limit does not exist since $\cos (x)$ oscillates between 1 and -1 .

Question 2

Consider

$$
f(x)=\frac{1}{x^{2}}
$$

We calculate the derivative as follows.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h} \\
&=\lim _{h \rightarrow 0} \frac{\frac{-2 h x-h^{2}}{x^{2}(x+h)^{2}}}{h}=\lim _{h \rightarrow 0} \frac{-2 x-h}{x^{2}(x+h)^{2}}=\frac{-2 x}{x^{4}}=-\frac{2}{x^{3}}
\end{aligned}
$$

Therefore,

$$
f^{\prime}(x)=-\frac{2}{x^{3}}
$$

Figure 1: Graphs of g and g^{\prime} for Question 3
We want to find the tangent line to the graph of $f(x)$ at $\left(\frac{1}{2}, 4\right)$. We need to find the slope of the tangent line, which is $f^{\prime}(1 / 2)$. We have that

$$
f^{\prime}\left(\frac{1}{2}\right)=-\frac{2}{(1 / 2)^{3}}=-16
$$

So the equation of the tangent line (using point-slope form) is

$$
y-4=-16\left(x-\frac{1}{2}\right)
$$

Question 3

The zeros of the polynomial $g(x)=x^{3}-x=x(x-1)(x+1)$ are $x=-1,0,1$.
The derivative of $g(x)$ is

$$
\begin{aligned}
g^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-(x+h)-x^{3}+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}-h}{h}=\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}-1=3 x^{2}-1
\end{aligned}
$$

The graphs of g and g^{\prime} are shown above.

