Math 1A: Discussion 9/19/2018 Problems
 Jeffrey Kuan

September 19, 2018

Problem Set 1

Question 1

Compute the following limit and justify your steps.

$$
\lim _{x \rightarrow-1} x^{2} \arctan \left(x^{2}-2\right)
$$

Problem Set 2

Question 2

Use the $\epsilon-\delta$ definition of the limit to show that

$$
\lim _{x \rightarrow-1} \frac{2 x^{2}+3 x+1}{x+1}=-1
$$

(Hint: Can you factor?)

Question 3

Show that there is a point c with $|c|<1$ such that $f(c)=0$, where

$$
f(x)=\sin \left(\frac{\pi}{2} x\right)+x^{2}-1
$$

Question 4

- Use the $\epsilon-\delta$ definition of the limit to show that

$$
\lim _{x \rightarrow 0}|x|=0
$$

- Now consider the function defined by

$$
\begin{gathered}
f(x)=x \text { if } x>0 \\
f(x)=-x \text { if } x<0 \\
f(x)=1 \text { if } x=0
\end{gathered}
$$

Use the previous part to show that f is not continuous at $x=0$. (This should be short!)

Question 5

Use the $\epsilon-\delta$ definition of the limit to show that

$$
\lim _{x \rightarrow 0} x^{4}+2=2
$$

Problem Set 3

Question 6 (*)

- Use the Squeeze Theorem to show that

$$
\lim _{x \rightarrow 0}\left[x \sin \left(\frac{1}{x^{2}}\right)\right]=0
$$

- Now use the $\epsilon-\delta$ definition of a limit to show that

$$
\lim _{x \rightarrow 0}\left[x \sin \left(\frac{1}{x^{2}}\right)\right]=0
$$

(Hint: $-1 \leq \sin \left(\frac{1}{x^{2}}\right) \leq 1$ when $x \neq 0$. Why?)

