Math 1A: Discussion 9/14/2018 Problems

Jeffrey Kuan

September 14, 2018

Problem Set 1

Question 1: Concept Check

Here is the definition of a limit again.

$$
\lim _{x \rightarrow a} f(x)=L
$$

is equivalent to:

For every $\epsilon>0$, there exists $\delta>0$ such that $|f(x)-L|<\epsilon$ whenever $0<|x-a|<\delta$

- The number ϵ represents the (horizontal/vertical) distance from \qquad
- The number δ represents the (horizontal/vertical) distance from \qquad
- The definition says that if we choose a (ϵ / δ), then we can find a (ϵ / δ) that satisfies the above definition.
- Why are we allowing every $\epsilon>0$ in the definition?
- Why do we have $0<|x-a|<\delta$ instead of $|x-a|<\delta$?
- Summarize the definition above in plain English. (No math expressions or symbols!)

Problem Set 2

Question 2

Use the $\epsilon-\delta$ definition of the limit to show that

$$
\lim _{x \rightarrow 1}(2 x+1)=3
$$

Question 3

- Use the $\epsilon-\delta$ definition of the limit to show that

$$
\lim _{x \rightarrow 0}|x|=0
$$

- Now consider the function defined by

$$
\begin{gathered}
f(x)=x \text { if } x>0 \\
f(x)=-x \text { if } x<0 \\
f(x)=1 \text { if } x=0
\end{gathered}
$$

Use the previous part to show that f is not continuous at $x=0$. (This should be short!)

Problem Set 3

Question $4\left(^{*}\right)$

- Use the Squeeze Theorem to show that

$$
\lim _{x \rightarrow 0}\left[x \sin \left(\frac{1}{x^{2}}\right)\right]=0
$$

- Now use the $\epsilon-\delta$ definition of a limit to show that

$$
\lim _{x \rightarrow 0}\left[x \sin \left(\frac{1}{x^{2}}\right)\right]=0
$$

(Hint: $-1 \leq \sin \left(\frac{1}{x^{2}}\right) \leq 1$ when $x \neq 0$. Why?)

