Math 1A: Discussion 9/14/2018 Problems

Jeffrey Kuan

September 14, 2018

Problem Set 1

Question 1: Concept Check

Here is the definition of a limit again.

$$\lim_{x \to a} f(x) = L$$

is equivalent to:

For every $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - L| < \epsilon$ whenever $0 < |x - a| < \delta$

- The number ϵ represents the (horizontal/vertical) distance from _____.
- The number δ represents the (horizontal/vertical) distance from _____.
- The definition says that if we choose a (ϵ/δ) , then we can find a (ϵ/δ) that satisfies the above definition.
- Why are we allowing every $\epsilon > 0$ in the definition?
- Why do we have $0 < |x a| < \delta$ instead of $|x a| < \delta$?
- Summarize the definition above in plain English. (No math expressions or symbols!)

Problem Set 2

Question 2

Use the ϵ - δ definition of the limit to show that

$$\lim_{x \to 1} (2x+1) = 3$$

Question 3

• Use the $\epsilon\text{-}\delta$ definition of the limit to show that

$$\lim_{x \to 0} |x| = 0$$

• Now consider the function defined by

$$f(x) = x \text{ if } x > 0$$

$$f(x) = -x \text{ if } x < 0$$

$$f(x) = 1 \text{ if } x = 0$$

Use the previous part to show that f is not continuous at x = 0. (This should be short!)

Problem Set 3

Question 4 (*)

• Use the Squeeze Theorem to show that

$$\lim_{x \to 0} \left[x \, \sin\left(\frac{1}{x^2}\right) \right] = 0$$

• Now use the ϵ - δ definition of a limit to show that

$$\lim_{x \to 0} \left[x \, \sin\left(\frac{1}{x^2}\right) \right] = 0$$

(Hint: $-1 \le \sin\left(\frac{1}{x^2}\right) \le 1$ when $x \ne 0$. Why?)