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Problem Set 1

Question 1

We have that (3− 2x)(3 + 2x) is a difference of squares:

(3− 2x)(3 + 2x) = (3)2 − (2x)2 = 9− 4x2

We factor the quadratics as follows:

x2 − 9 = (x+ 3)(x− 3)

x2 − 5x+ 6 = (x− 2)(x− 3)

We have that the reference angle here is π/3 (the acute angle made with the x-axis). We have
that π/3 is 60 degrees, so that
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We note that 4π/3 is in the third quadrant. So only tangent is positive here, and sine and cosine
are negative. So
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To simplify the sum of these two fractions, we place both fractions over a common denominator.
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so we have that
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Problem Set 2

Question 2

For the first limit, we plug in x = 0, and we get
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Since all functions here are continuous, we get that the limit is just the value of the function at
the point:
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We plug in h = 0 for the next limit, and get 0/0. So we have to do more work. Since there is
a square root in the numerator, we should try to rationalize the numerator.
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We plug in x = 2 and we get 0/0. So we have to do some work. We notice that we can simplify
the numerator by using a common denominator.
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For the next limit, we plug in x = π and get π2/0. So we have some sort of limit at infinity or
negative infinity. We note that as x goes to π from the right, x2 is basically around π2. We next
analyze the denominator. As x goes to π from the right, sin(x) is negative and getting smaller.
So we have π2 over something negative and getting smaller, so the result is negative and getting
bigger. So therefore,
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For the next limit, we plug in x = 3 and we get 0/0. So we have to do more work. We note
that we can factor so we can try that.
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Now we consider the next limit
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The first step is to plug in. We get that
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So since all of our functions are well-behaved (in the sense that they are continuous), we have that
the limit is
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Next, we consider the limit
limx→0+e

xln(x)

We plug in and have a problem because ln(x) is undefined at x = 0. So we think about what
happens as x approaches 0 from the right. We have that as x approaches 0 from the right, ex is
basically around 1. As x approaches zero from the right, ln(x) is getting negative and bigger and
bigger. So multiplying a number that is around 1 by a number that is negative and getting bigger,
we have that the the product is negative and getting bigger as x approaches 0 from the right. So

limx→0+e
xln(x) = −∞

For the next limit, we plug in x = π/4. We get (π2/16)/0, which suggests that we have a limit
that is equal to infinity or negative infinity. As x approaches π/4 from the left, we have that x2

is around π2/16, so the numerator is basically just a positive constant. Next, we note that tan(x)
approaches 1 and is less than 1 as x goes to π/4 from the left. So then 1− tan(x) is positive and
getting smaller and smaller as x goes to π/4 from the left. So as x goes to π/4 from the left, we

have that x2

1−tan(x) is basically a positive constant divided by a positive number that is getting

smaller and smaller, which gives us a positive number that is getting bigger and bigger. So we
have that
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The first step is to plug in x = 0. We get
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Because the functions involved are all well-behaved (in the sense that they are continuous), we
have that
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For the next limit, we plug in h = 0 and we get 0/0. We note that there are square roots here
so we try to rationalize the numerator.
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For the last limit, we plug in h = 0 and get 0/0. We note that we can simplify the expression
in the numerator by putting everything over a common denominator.
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