Math 1A: Discussion 9/12/2018 Solutions

Jeffrey Kuan

September 12, 2018

Problem Set 1

Question 1

We have that $(3-2 x)(3+2 x)$ is a difference of squares:

$$
(3-2 x)(3+2 x)=(3)^{2}-(2 x)^{2}=9-4 x^{2}
$$

We factor the quadratics as follows:

$$
\begin{gathered}
x^{2}-9=(x+3)(x-3) \\
x^{2}-5 x+6=(x-2)(x-3)
\end{gathered}
$$

We have that the reference angle here is $\pi / 3$ (the acute angle made with the x-axis). We have that $\pi / 3$ is 60 degrees, so that

$$
\begin{aligned}
& \sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2} \\
& \cos \left(\frac{\pi}{3}\right)=\frac{1}{2} \\
& \tan \left(\frac{\pi}{3}\right)=\sqrt{3}
\end{aligned}
$$

We note that $4 \pi / 3$ is in the third quadrant. So only tangent is positive here, and sine and cosine are negative. So

$$
\begin{aligned}
& \sin \left(\frac{4 \pi}{3}\right)=-\frac{\sqrt{3}}{2} \\
& \cos \left(\frac{4 \pi}{3}\right)=-\frac{1}{2} \\
& \tan \left(\frac{4 \pi}{3}\right)=\sqrt{3}
\end{aligned}
$$

To simplify the sum of these two fractions, we place both fractions over a common denominator.

$$
\frac{2}{1-x}+\frac{1}{2-x}=\frac{4-2 x+1-x}{(1-x)(2-x)}=\frac{5-3 x}{(1-x)(2-x)}
$$

We have that

$$
4^{1 / 2}=2
$$

so we have that

$$
\frac{1}{8}=2^{-3}=\left(4^{1 / 2}\right)^{-3}=4^{-3 / 2}
$$

Therefore,

$$
\log _{4}\left(\frac{1}{8}\right)=-\frac{3}{2}
$$

Problem Set 2

Question 2

For the first limit, we plug in $x=0$, and we get

$$
\frac{\cos (0)}{1+2 \sin (0)}=\frac{1}{1+0}=1
$$

Since all functions here are continuous, we get that the limit is just the value of the function at the point:

$$
\lim _{x \rightarrow 0} \frac{\cos (2 x)}{1+2 \sin (x)}=1
$$

We plug in $h=0$ for the next limit, and get $0 / 0$. So we have to do more work. Since there is a square root in the numerator, we should try to rationalize the numerator.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sqrt{1+h^{2}}-1}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{1+h^{2}}-1}{h}\left(\frac{\sqrt{1+h^{2}}+1}{\sqrt{1+h^{2}}+1}\right) \\
\quad=\lim _{h \rightarrow 0} \frac{\left(1+h^{2}\right)-1}{h\left(\sqrt{1+h^{2}}+1\right)}=\lim _{h \rightarrow 0} \frac{h^{2}}{h\left(\sqrt{1+h^{2}}+1\right)}=\lim _{h \rightarrow 0} \frac{h}{\sqrt{1+h^{2}}+1}=0
\end{aligned}
$$

We plug in $x=2$ and we get $0 / 0$. So we have to do some work. We notice that we can simplify the numerator by using a common denominator.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\frac{1}{(x-1)^{2}}-1}{x-2}=\lim _{x \rightarrow 2} \frac{1-x^{2}+2 x-1}{(x-1)^{2}} & \cdot \frac{1}{x-2}=\lim _{x \rightarrow 2} \frac{-x^{2}+2 x}{(x-1)^{2}} \cdot \frac{1}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{-x(x-2)}{(x-1)^{2}} \cdot \frac{1}{x-2}=\lim _{x \rightarrow 2} \frac{-x}{(x-1)^{2}}=-2
\end{aligned}
$$

For the next limit, we plug in $x=\pi$ and get $\pi^{2} / 0$. So we have some sort of limit at infinity or negative infinity. We note that as x goes to π from the right, x^{2} is basically around π^{2}. We next analyze the denominator. As x goes to π from the right, $\sin (x)$ is negative and getting smaller. So we have π^{2} over something negative and getting smaller, so the result is negative and getting bigger. So therefore,

$$
\lim _{x \rightarrow \pi^{+}} \frac{x^{2}}{\sin (x)}=-\infty
$$

For the next limit, we plug in $x=3$ and we get $0 / 0$. So we have to do more work. We note that we can factor so we can try that.

$$
\lim _{x \rightarrow 3} \frac{x^{2}-6 x+9}{x^{2}-9}=\lim _{x \rightarrow 3} \frac{(x-3)^{2}}{(x+3)(x-3)}=\lim _{x \rightarrow 3} \frac{x-3}{x+3}=0
$$

Now we consider the next limit

$$
\lim _{x \rightarrow 0} e^{-x} \sin \left(x+\frac{5 \pi}{6}\right)
$$

The first step is to plug in. We get that

$$
e^{0} \sin \left(\frac{5 \pi}{6}\right)=\frac{1}{2}
$$

So since all of our functions are well-behaved (in the sense that they are continuous), we have that the limit is

$$
\lim _{x \rightarrow 0} e^{-x} \sin \left(x+\frac{5 \pi}{6}\right)=\frac{1}{2}
$$

Next, we consider the limit

$$
\lim _{x \rightarrow 0^{+}} e^{x} \ln (x)
$$

We plug in and have a problem because $\ln (x)$ is undefined at $x=0$. So we think about what happens as x approaches 0 from the right. We have that as x approaches 0 from the right, e^{x} is basically around 1 . As x approaches zero from the right, $\ln (x)$ is getting negative and bigger and bigger. So multiplying a number that is around 1 by a number that is negative and getting bigger, we have that the the product is negative and getting bigger as x approaches 0 from the right. So

$$
\lim _{x \rightarrow 0^{+}} e^{x} \ln (x)=-\infty
$$

For the next limit, we plug in $x=\pi / 4$. We get $\left(\pi^{2} / 16\right) / 0$, which suggests that we have a limit that is equal to infinity or negative infinity. As x approaches $\pi / 4$ from the left, we have that x^{2} is around $\pi^{2} / 16$, so the numerator is basically just a positive constant. Next, we note that $\tan (x)$ approaches 1 and is less than 1 as x goes to $\pi / 4$ from the left. So then $1-\tan (x)$ is positive and getting smaller and smaller as x goes to $\pi / 4$ from the left. So as x goes to $\pi / 4$ from the left, we have that $\frac{x^{2}}{1-\tan (x)}$ is basically a positive constant divided by a positive number that is getting smaller and smaller, which gives us a positive number that is getting bigger and bigger. So we have that

$$
\lim _{x \rightarrow \frac{\pi}{4}-} \frac{x^{2}}{1-\tan (x)}=\infty
$$

The first step is to plug in $x=0$. We get

$$
\frac{e^{e^{0}-1}}{1+e^{0}}=\frac{e^{0}}{1+e^{0}}=\frac{1}{2}
$$

Because the functions involved are all well-behaved (in the sense that they are continuous), we have that

$$
\lim _{x \rightarrow 0} \frac{e^{\left(e^{x}-1\right)}}{1+e^{x}}=\frac{1}{2}
$$

For the next limit, we plug in $h=0$ and we get $0 / 0$. We note that there are square roots here so we try to rationalize the numerator.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\sqrt{2+h}-\sqrt{2-h}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{2+h}-\sqrt{2-h}\left(\frac{\sqrt{2+h}+\sqrt{2-h}}{\sqrt{2+h}+\sqrt{2-h}}\right)}{h}=\begin{array}{l}
=\lim _{h \rightarrow 0} \frac{2}{\sqrt{2+h}+\sqrt{2-h}} \\
\quad=\lim _{h \rightarrow 0} \frac{(2+h)-(2-h)}{h(\sqrt{2+h}+\sqrt{2-h})}=\lim _{h \rightarrow 0} \frac{2 h}{h(\sqrt{2+h}+\sqrt{2-h})} \\
=\frac{2}{2 \sqrt{2}}=\frac{1}{\sqrt{2}}
\end{array}
\end{aligned}
$$

For the last limit, we plug in $h=0$ and get $0 / 0$. We note that we can simplify the expression in the numerator by putting everything over a common denominator.

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{1+h}+\frac{1}{1-h}-2}{h^{2}}=\lim _{h \rightarrow 0} \frac{\frac{1-h+1+h-\left(2-2 h^{2}\right)}{1-h^{2}}}{h^{2}}=\lim _{h \rightarrow 0} \frac{2 h^{2}}{1-h^{2}} \cdot \frac{1}{h^{2}}=\lim _{h \rightarrow 0} \frac{2}{1-h^{2}}=2
$$

