Math 1A: Discussion 9/10/2018 Solutions

Jeffrey Kuan

September 10, 2018

Problem Set 1

Question 1

We show a graph of f below.
To calculate these limits, we first calculate the left and right hand limits. We have that

$$
\begin{gathered}
\lim _{t \rightarrow 0^{-}} f(t)=\lim _{t \rightarrow 0^{-}}(t-1)=-1 \\
\lim _{t \rightarrow 0^{+}} f(t)=\lim _{t \rightarrow 0^{+}} t^{2}=0
\end{gathered}
$$

So since the left and right hand limits are different, we see that

$$
\lim _{t \rightarrow 0} f(t)
$$

does not exist.
For the next limit, we have that

$$
\begin{aligned}
\lim _{t \rightarrow 1^{-}} f(t) & =\lim _{t \rightarrow 1^{-}} t^{2}=1 \\
\lim _{t \rightarrow 1^{+}} f(t) & =\lim _{t \rightarrow 1^{+}} t=1
\end{aligned}
$$

So since both the left and right hand limits exist and are equal, we have that

$$
\lim _{t \rightarrow 1} f(t)=1
$$

Question 2

For the first limit, the first step is to plug in.

$$
0^{2}-3(0)+\sqrt{0+1}=1
$$

This answer makes sense, so since our function is well-behaved (continuous), we just have that

$$
\lim _{x \rightarrow 0}\left(x^{2}-3 x+\sqrt{x+1}\right)=1
$$

For the next limit, the first step is to plug in. We get $0 / 0$, so we have to do some more work. We observe that we can factor the numerator.

$$
\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x-2}=\lim _{x \rightarrow 2} \frac{(x-1)(x-2)}{x-2}=\lim _{x \rightarrow 2}(x-1)=1
$$

where we can cancel out the $x-2$ from the numerator and denominator because we do not care about what happens when $x=2$ when evaluating the limit.

For the next limit, we plug in and get $2 / 0$. So we see that we have some sort of vertical asymptote/limit at infinity. As we approach 2 from the left hand side, we note that $x-2$ is negative and getting smaller, while the numerator is around 2 . So 2 over a small negative number is large and negative, so we have that

$$
\lim _{x \rightarrow 2^{-}} \frac{x}{x-2}=-\infty
$$

Now, when we approach 2 from the right hand side, $x-2$ is positive and getting smaller while the numerator is staying around 2 . Since 2 divided by a small positive number is large and positive, we have that

$$
\lim _{x \rightarrow 2^{+}} \frac{x}{x-2}=\infty
$$

Problem Set 2

Question 3

Let us compute

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{2+h}-\frac{1}{2}}{h}
$$

The first step is to plug in $h=0$. We get $0 / 0$ so we need to do more work. We observe that we can simplify the numerator. Doing this reveals that there is an h / h that we can cancel out.

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{2+h}-\frac{1}{2}}{h}=\lim _{h \rightarrow 0} \frac{\frac{2-(2+h)}{2(2+h)}}{h}=\lim _{h \rightarrow 0} \frac{-h}{2(2+h)} \cdot \frac{1}{h}=\lim _{h \rightarrow 0} \frac{-1}{2(2+h)}=-\frac{1}{4}
$$

For the next limit, we plug in and immediately notice that $\tan \left(\frac{\pi}{2}\right)$ is undefined. So we have some sort of asymptote. As x approaches $\pi / 2$ from the left, we have that $\tan (x)$ is positive and getting larger and larger, going to infinity. Meanwhile, the denominator is around $\pi / 2$. So we have something positive and getting larger and larger, divided by something that is around a constant. So we conclude that

$$
\lim _{x \rightarrow \frac{\pi}{2}-} \frac{\tan (x)}{x}=\infty
$$

For the next limit, we plug in and get $1 / 0$, so we have a vertical asymptote/limit at infinity. We note that as we approach 0 from the right hand side, e^{x} is approaching 1 and is actually greater than 1. So as we approach 0 from the right hand side, we have that $1-e^{x}$ is getting closer and closer to 0 but is negative. So 1 divided by a negative number that is getting smaller and smaller (closer and closer to 0) gives a negative number that is getting larger and larger. So

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{1-e^{x}}=-\infty
$$

For the next limit, we plug in $h=0$ and we get $0 / 0$, so we have to do more work. We rationalize the numerator and see that doing this makes an h / h appear that we can cancel.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}\left(\frac{\sqrt{1+h}+1}{\sqrt{1+h}+1}\right) \\
= & \lim _{h \rightarrow 0} \frac{(1+h)-1}{h(\sqrt{1+h}+1)}=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{1+h}+1)}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{1+h}+1}=\frac{1}{2}
\end{aligned}
$$

For the next limit, we plug in $x=1$ and get $0 / 0$ so more work needs to be done. Even though it doesn't look like it at first, the denominator can actually be written as a difference of squares. This will let us cancel out the $1-\sqrt{x}$ from the numerator.

$$
\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{1-x}=\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{(1+\sqrt{x})(1-\sqrt{x})}=\lim _{x \rightarrow 1} \frac{1}{1+\sqrt{x}}=\frac{1}{2}
$$

Problem Set 3

Question 4 (*)

We first plug in $h=0$ and see that we get $0 / 0$. So we have to do more work. Here, we will use the difference of cubes formula:

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Doing so to "rationalize" the numerator will make an h / h appear which we can cancel.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\sqrt[3]{x+h}-\sqrt[3]{x}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt[3]{x+h}-\sqrt[3]{x}}{h}\left(\frac{(\sqrt[3]{x+h})^{2}+\sqrt[3]{x+h} \sqrt[3]{x}+(\sqrt[3]{x})^{2}}{(\sqrt[3]{x+h})^{2}+\sqrt[3]{x+h} \sqrt[3]{x}+(\sqrt[3]{x})^{2}}\right) \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-(x)}{h\left((\sqrt[3]{x+h})^{2}+\sqrt[3]{x+h} \sqrt[3]{x}+(\sqrt[3]{x})^{2}\right)}=\lim _{h \rightarrow 0} \frac{h}{h\left((\sqrt[3]{x+h})^{2}+\sqrt[3]{x+h} \sqrt[3]{x}+(\sqrt[3]{x})^{2}\right)} \\
& \quad=\lim _{h \rightarrow 0} \frac{1}{(\sqrt[3]{x+h})^{2}+\sqrt[3]{x+h} \sqrt[3]{x}+(\sqrt[3]{x})^{2}}=\frac{1}{(\sqrt[3]{x})^{2}+\sqrt[3]{x} \sqrt[3]{x}+(\sqrt[3]{x})^{2}}=\frac{1}{3 x^{2 / 3}}
\end{aligned}
$$

