Math 1A: Discussion 9/10/2018 Problems
 Jeffrey Kuan

September 10, 2018

Strategies for computing limits:

- Plug it in.
- Look for the $0 / 0$ and look for opportunities to cancel, simplify, or rationalize the numerator.
- Asymptotic analysis - in particular for limits that are infinite.

Problem Set 1

Question 1

Consider the function

$$
\begin{gathered}
f(t)=t-1 \text { if } t \leq 0 \\
f(t)=t^{2} \text { if } 0<t<1 \\
f(t)=t \text { if } t \geq 1
\end{gathered}
$$

- Sketch the graph of f.
- Compute the following limits if they exist

$$
\begin{aligned}
& \lim _{t \rightarrow 0} f(t) \\
& \lim _{t \rightarrow 1} f(t)
\end{aligned}
$$

Question 2

Compute the following limits.

$$
\begin{gathered}
\lim _{x \rightarrow 0}\left(x^{2}-3 x+\sqrt{x+1}\right) \\
\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x-2} \\
\lim _{x \rightarrow 2^{-}} \frac{x}{x-2} \\
\lim _{x \rightarrow 2^{+}} \frac{x}{x-2}
\end{gathered}
$$

Problem Set 2

Question 3

Compute the following limits:

$$
\begin{gathered}
\lim _{h \rightarrow 0} \frac{\frac{1}{2+h}-\frac{1}{2}}{h} \\
\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\tan (x)}{x} \\
\lim _{x \rightarrow 0^{+}} \frac{1}{1-e^{x}} \\
\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}
\end{gathered}
$$

(Hint: Multiply this by $\frac{\sqrt{1+h}+1}{\sqrt{1+h}+1}$ to rationalize the numerator.)

$$
\lim _{x \rightarrow 1} \frac{1-\sqrt{x}}{1-x}
$$

(Hint: Difference of squares.)

Problem Set 3

Question 4 (*)

Find a formula for the following limit, where x is any real number.

$$
\lim _{h \rightarrow 0} \frac{\sqrt[3]{x+h}-\sqrt[3]{x}}{h}
$$

