Math 1A: Discussion 10/3/2018 Problems

Jeffrey Kuan

October 3, 2018
$(f(x) g(x))^{\prime}=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$
First times the derivative of the second plus the second times the derivative of the first.

$$
\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

Bottom times the derivative of the top minus the top times the derivative of the bottom all over the bottom squared

$$
\begin{aligned}
\frac{d}{d x}(\sin (x)) & =\cos (x) \\
\frac{d}{d x}(\cos (x)) & =-\sin (x)
\end{aligned}
$$

Problem Set 1

Question 1

A student is taking his Math 1A Midterm 2, and comes across a question where he has to take a derivative. "I got this!" he says at first, but to his horror, he sees that as part of this derivative, he has to take the derivative of $y=\sec (x)$ and $y=\tan (x)$.

He thinks to himself, "Not more trigonometry!" and sighs... He vaguely remembers something about the derivative of $y=\tan (x)$ being... well, actually he realizes he doesn't remember at all. Oops.

But he suddenly has a burst of inspiration. "Maybe I can use the quotient rule..." he thinks. How can he calculate the derivatives of $y=\sec (x)$ and $y=\tan (x)$ on the spot?

Question 2

Calculate the derivative of

$$
f(x)=\frac{\sin (x)}{x^{2}}
$$

by first using the quotient rule, and then by using the product rule, by writing $f(x)$ as $\sin (x) \cdot \frac{1}{x^{2}}$. Check that your answers both of these ways give the same answer.

Problem Set 2

Question 3

Consider the function

$$
f(x)=\frac{2 x^{2}}{x^{2}-4}
$$

- What are the vertical asymptotes of f ?
- What is the horizontal asymptote of f ?
- What are the zeros of f ?
- Calculate f^{\prime}. What are the zeros, vertical asymptotes, and horizontal asymptotes of f^{\prime} ?

Question 4

- What is the 1003 rd derivative of $f(x)=\sin (x)-\cos (x)$?
- What is the 1003 rd derivative of $f(x)=x e^{x}$?

Question 5

Find the derivatives of the following functions.

$$
\begin{gathered}
f(x)=\frac{\sin (x)}{x e^{x}} \\
g(x)=\sqrt{x} \cdot e^{x} \cos (x) \\
h(x)=\frac{\sqrt[3]{x}}{\left(x^{2}+3 x-1\right) e^{x}}
\end{gathered}
$$

In addition, find the equation of the tangent line to h at $x=0$.

Problem Set 3

Question 6 (*)

Consider the functions

$$
\begin{aligned}
& f(x)=\sqrt{x} \sin (x) \\
& g(x)=\frac{1}{\sqrt{x}} \sin (x)
\end{aligned}
$$

Compute f^{\prime} and g^{\prime}, and find

$$
\begin{array}{r}
\lim _{x \rightarrow \infty} f(x) \\
\lim _{x \rightarrow \infty} f^{\prime}(x) \\
\lim _{x \rightarrow \infty} g(x) \\
\lim _{x \rightarrow \infty} g^{\prime}(x)
\end{array}
$$

