Math 1A: Discussion 10/1/2018 Problems

Jeffrey Kuan

September 28, 2018

Problem Set 1

Question 1

(Midterm 2, Fall 2005, Question 1)
For what values of x does the graph of $f(x)=x-2 \sin (x)$ have a horizontal tangent?

Problem Set 2

Question 2

(Midterm 2, Fall 1995, Question 1)
Evaluate

$$
\lim _{b \rightarrow 2} \frac{b^{691}-2^{691}}{b-2}
$$

by using rules of differentiation, first expressing the limit as a derivative.

Question 3

- (Midterm 2, Fall 2012, Question 4)

Use a linear approximation estimate $\sqrt[4]{1.003}$.

- Approximate $e^{0.05}$.

Question 4

We can take multiple derivatives in the following way. Let the second derivative of a function f be the derivative of f^{\prime}. More generally, let the nth derivative of f be the result you get after taking the derivative of f a total of n times in a row. For
example, to find the third derivative of $f(x)=\frac{1}{2} x^{4}$, we take three derivatives of f in a row:

$$
\frac{1}{2} x^{4} \rightarrow 2 x^{3} \rightarrow 6 x^{2} \rightarrow 12 x
$$

So the third derivative of f, denoted by $f^{\prime \prime \prime}(x)$ or $f^{(3)}(x)$, is

$$
f^{\prime \prime \prime}(x)=f^{(3)}(x)=12 x
$$

- What is the tenth derivative of $y=e^{2 x}$?
- What is the fiftieth derivative of $y=x^{50}$?
- What is the 101st derivative of $y=x^{100}+e^{x}$?

Problem Set 3

Question 5

In this question, we will examine why a function can fail to be differentiable. Consider the two functions

$$
\begin{gathered}
f(x)=|x| \\
g(x)=x^{2 / 3}
\end{gathered}
$$

- Quickly sketch f and g.
- Show (using the definition of the derivative) that $f(x)$ and $g(x)$ are both not differentiable at $x=0$.
- Calculate $f^{\prime}(x)$ and $g^{\prime}(x)$, when they exist. Then, find the following limits

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f^{\prime}(x) \\
& \lim _{x \rightarrow 0^{-}} f^{\prime}(x) \\
& \lim _{x \rightarrow 0^{+}} g^{\prime}(x) \\
& \lim _{x \rightarrow 0^{-}} g^{\prime}(x)
\end{aligned}
$$

- We say that f has a corner at $x=0$, and g has a cusp or vertical tangent at $x=0$. Interpret your result from the previous part to explain why these terms make sense.
- Consider the functions $y=e^{-|x|}, y=\sqrt{|x|}$, and $y=e^{|x|}-\frac{1}{2} x^{2}$. State whether these functions are differentiable at $x=0$. If a function fails to be differentiable at $x=0$, state whether the function has a corner or a cusp/vertical tangent there.

