Math 1A: Discussion 11/14/18
 Jeffrey Kuan

November 14, 2018

Problem Set 1

Question 1

Evaluate the following integrals.

- Hint for the fourth and fifth integrals: !eluR niahC
- Hint for the last integral: partial fraction decomposition, write the integrand as

$$
\frac{1}{x^{2}-1}=\frac{C_{1}}{x-1}+\frac{C_{2}}{x+1}
$$

and use this to find an antiderivative.

$$
\begin{gathered}
\int_{-1}^{1} \frac{2}{1+x^{2}} d x \\
\int_{1}^{2} x^{2}+1+\frac{1}{x^{2}} d x \\
\int_{-e^{2}}^{-1} \frac{2}{x}+\frac{3}{x^{2}} d x \\
\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sin ^{3}(\theta) \cos (\theta) d \theta \\
\int_{0}^{\frac{\pi}{4}} \sec ^{2}(x) e^{\tan (x)} d x \\
\int_{-1 / 2}^{1 / 2} \frac{1}{x^{2}-1} d x
\end{gathered}
$$

Problem Set 2

Question 2

Calculate

$$
\begin{gathered}
\frac{d}{d x} \int_{0}^{x} \sin ^{3}(y) d y \\
\frac{d}{d x} \int_{x}^{2} \sin ^{3}(y) d y \\
\frac{d}{d x} \int_{-1}^{x^{2}+\sqrt{x}} \sin ^{3}(y) d y \\
\frac{d}{d x}\left(e^{x} \int_{x^{2}}^{x^{3}} \sin ^{3}(y) d y\right)
\end{gathered}
$$

Question 3 (Midterm 2 Reprise)

Let f be the continuous function given by

$$
\begin{gathered}
f(x)=x \ln (|x|) \text { for } x \neq 0 \\
f(x)=a \text { for } x=0
\end{gathered}
$$

where a is a constant that makes f continuous everywhere.

- What is the value of a ? (Hint: L'Hopital)
- Consider the function

$$
F(x)=\int_{0}^{x} f(x) d x
$$

Find all relative maxima and minima of F, all points of inflection, and use this information to graph the function F.

Problem Set 3

Question $4\left({ }^{*}\right)$

Let f be a continuous function on $[a, b]$. Then, note that

$$
F(x)=\int_{a}^{x} f(x) d x
$$

is a differentiable function on $[a, b]$. Apply the Mean Value theorem to F to deduce the mean value theorem for integrals. Then, illustrate the mean value theorem for integrals using the function $f(x)=\sqrt{x}$ on the interval $[0,4]$.

