Math 1A: Discussion 8/29/2018

Jeffrey Kuan

August 29, 2018

After this week, you should be able to:

- Determine whether a function is even or odd. (To do this, compute $f(-x)$)
- Find the domain of a function, paying attention to denominators and square roots.
- Solve quadratic equations for x by factoring.
- Evaluate difference quotients of the form $\frac{f(x+h)-f(x)}{h}$.
- Graph basic functions. (In particular, linear functions and quadratic functions)
- Characterize polynomials by their zeros.

1 Problem Set 1

1.1 Question 1

Review of trigonometric functions:

- Evaluate $\sin \left(\frac{5 \pi}{3}\right)$ and $\tan \left(\frac{11 \pi}{4}\right)$.
- For what values of x do we have $\cos (x)=-\frac{1}{2}$?
- What is the domain of $\tan (x)$?

1.2 Question 2

Are the domains of the functions $f(s)$ and $g(s)$ below the same?

$$
\begin{aligned}
& f(s)=1-\sqrt{2-s} \\
& g(s)=\frac{1}{1-\sqrt{2-s}}
\end{aligned}
$$

2 Problem Set 2

2.1 Question 3

Find the domain of the following functions.

$$
f(t)=\frac{1}{\sqrt{t^{2}-3 t+2}}
$$

$$
\begin{aligned}
g(t) & =\frac{1}{2+\frac{1}{t-2}} \\
h(t) & =\frac{1}{\frac{4}{\sqrt{t^{2}-1}}-1} \\
u(t) & =\frac{\tan (t)}{1+\sin (t)} \\
v(t) & =\frac{t}{\sqrt[3]{t^{2}-1}} \\
s(t) & =\frac{t}{\sqrt{(\sqrt{t})-1}}
\end{aligned}
$$

2.2 Question 4

Review of quadratic functions:

- Find a quadratic function $f(x)$ that has exactly one zero at $x=1$ and has a y-intercept at $(0,3)$. What is the domain and range of $f(x)$?
- Find a quadratic function $h(x)$ that has exactly two zeros at $x=-1$ and $x=2$ that also passes through the point $(3,-8)$.
- Give an example of a quadratic function that has no zeros.

3 Problem Set 3

3.1 Question $5\left(^{*}\right)$

Find the domain of the function

$$
f(x)=\frac{1}{\sqrt{2 \sin ^{3}(x)-3 \sin ^{2}(x)-2 \sin (x)}}
$$

3.2 Question $6(* *)$

In this question, we prove the (cool) fact that the sum of any multiple of sine and any multiple of cosine is still a sine function. We do this in the following steps.

- If a and b are real numbers satisfying $a^{2}+b^{2}=1$, show that

$$
a \sin (t)+b \cos (t)=\sin (t+\delta)
$$

for some real number δ. (Hint: Use the trigonometric identities $\cos ^{2}(x)+\sin ^{2}(x)=1$ and $\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y))$.

- If A and B are any real numbers, show that

$$
A \sin (t)+B \cos (t)=C \sin (t+\delta)
$$

for some real numbers C and δ. (Hint: Use the result from the previous part)

