Math 1A: Discussion 8/27/2018 Solutions

Jeffrey Kuan

August 27, 2018

1 Problem Set 1

1.1 Question 1

We have that

$$
f(1)=2(1)+1=3
$$

and

$$
g(0)=0^{2}+2=2
$$

The graphs of f and g are shown below.

To find whether these functions are even or odd, consider $f(-x)$ and $g(-x)$.

$$
f(-x)=2(-x)+1=-2 x+1
$$

So $f(-x)$ is not the same as $f(x)$ or $-f(x)$. So f is neither even nor odd.
We have that

$$
g(-x)=(-x)^{2}+2=x^{2}+2
$$

So we see that $g(-x)$ is equal to $g(x)$, and not equal to $-g(x)$. So g is even but not odd.
A graph will show that f is increasing on \mathbb{R}. The function g is decreasing on $(-\infty, 0]$ and increasing on $[0, \infty)$.

To find where $f(x)=g(x)$, we set $2 x+1=x^{2}+2$. Solving, we get

$$
\begin{gathered}
x^{2}-2 x+1=0 \\
(x-1)^{2}=0
\end{gathered}
$$

So $f(x)=g(x)$ when $x=1$.

2 Problem Set 2

2.1 Question 2

To find the domain of f and g, we want to find all points where the denominator is not zero, as a fraction cannot have a denominator equal to 0 . So the domain of f and g are both $(-\infty, 3) \cup(3, \infty)$.

To find points where $f(x)=0$, we set $x^{2}+2 x+1=0$, and see that this is the same as $(x+1)^{2}=0$. So the only x that satisfies this is $x=-1$, and the denominator is indeed nonzero there. So $f(x)=0$ at $x=-1$.

For $g(x)=0$, we set $x^{2}-2 x-3=0$, and get $(x-3)(x+1)=0$. Then, $x=-1,3$. But note that at $x=3$, the function $g(x)$ is undefined. So we have $g(x)=0$ only at $x=-1$.

The equation for $g(x)$ can be simplified as

$$
g(x)=\frac{(x+1)(x-3)}{x-3}
$$

So $g(x)=x+1$ when $x \neq 3$ and is undefined for $x=3$. (Important! We are canceling $x-3$ here, but you can only cancel when the thing you are canceling is nonzero. So the formula $g(x)=x+1$ only works if $x \neq 3$). So $g(x)$ is just a line with a hole at $x=3$.

There is no value of x with $f(x)=2$ because if we solve the equation, we get

$$
\begin{gathered}
\frac{x^{2}+2 x+1}{x-3}=2 \\
x^{2}+2 x+1=2 x-6 \\
x^{2}=-7
\end{gathered}
$$

But this has no solutions in \mathbb{R}. So there is no value of x that has $f(x)=2$.

2.2 Question 3

Just substitute the values in and simplify. Remember that x and h are both variables, so just simplify as much as you can.

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{-(x+h)^{2}+2(x+h)-\left(-x^{2}+2 x\right)}{h} \\
& =\frac{-x^{2}-2 h x-h^{2}+2 x+2 h+x^{2}-2 x}{h}=\frac{-2 h x-h^{2}+2 h}{h}=-2 x+2-h
\end{aligned}
$$

2.3 Question 4

For the function $f(x)=\sqrt{x^{2}-1}$, to find the domain, we set

$$
\begin{gathered}
x^{2}-1 \geq 0 \\
(x-1)(x+1) \geq 0
\end{gathered}
$$

Trying values in $(-\infty,-1),(-1,1)$, and $(1, \infty)$, we see that the solution is $x \leq-1, x \geq 1$. So the domain of f is

$$
(-\infty,-1] \cup[1, \infty)
$$

Meanwhile, the domain of $g(x)=\sqrt{x^{2}+1}$ is all real numbers. We want to solve the inequality

$$
x^{2}+1 \geq 0
$$

But we note that for all real numbers x, we have that $x^{2} \geq 0$. So $x^{2}+1 \geq 0$ also, and thus, g is defined for all real numbers.

2.4 Question 5

The volume of a cylinder is $V=\pi r^{2} h$. So we have that

$$
V(h)=\pi\left(\frac{h}{4}\right)^{2} h=\frac{\pi}{16} h^{3}
$$

The surface area of a cylinder is $S=2 \pi r^{2}+2 \pi r h$. So we have that

$$
S(r)=2 \pi r^{2}+2 \pi r(4 r)=10 \pi r^{2}
$$

3 Problem Set 3

$3.1 \quad$ (*) * Question 6

We set the denominator equal to 0 . We get that the function is undefined whenever $\sin (x)=0$, so the domain is all real numbers, excluding multiples of π.

For the range, we note that the range of $\sin (x)$ is $[-1,1]$, so the range of $\sin ^{2}(x)$ is $[0,1]$. Note that on the domain of h though, $\sin ^{2}(x) \neq 0$, so on the domain of $h, \sin ^{2}(x)$ takes on values in $(0,1]$. So then, $h(x)$ takes on values in $[2, \infty)$. So the range of h is $[2, \infty)$.

We recall that $\sin (-x)=-\sin (x)$. So then

$$
h(-x)=\frac{2}{(\sin (-x))^{2}}=\frac{2}{(-\sin (x))^{2}}=\frac{2}{\sin ^{2}(x)}
$$

So we see that $h(-x)=h(x)$, and $h(-x)$ is not the same as $-h(x)$. So h is even but not odd.
A graph of h can be obtained by successively graphing intermediate functions, as shown below.

$3.2 \quad(* *)$ Question 7

We note that the only function on \mathbb{R} that is both even and odd is the zero function. To see this, suppose that $h(x)$ is a function on \mathbb{R} that is both even and odd. Then, for every $x \in \mathbb{R}$, we have
that $h(-x)=h(x)=-h(x)$. So $h(x)=-h(x)$ for all real numbers, and hence $h(x)=0$ for all real numbers. This shows that the only function on \mathbb{R} that is both even and odd is the zero function.

We are given that $f(x)$ is even, so then we have that $f(x)-1$ is also even. (This is because then $f(-x)-1=f(x)-1)$. So $f(x)-1$ is a function on \mathbb{R} that is both even and odd. So by our previous observation, $f(x)-1$ is the zero function, so $f(x)$ is the constant function that is equal to 1 everywhere.

