Problem Set 2 Solutions
Section 1.7 2, 8, 10, 34, 36,38
2) $\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ 5 \\ -8\end{array}\right],\left[\begin{array}{c}-3 \\ 4 \\ 1\end{array}\right]$ linearindependent since

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
0 & 0 & -3 \\
0 & 5 & 4 \\
2 & -8 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
2 & -8 & 1 \\
0 & 5 & 4 \\
0 & 0 & -3
\end{array}\right]
\end{aligned}
$$

SO A has reduced echelon form that is the identity so there are no free columns.
8)

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -3 & 3 & -2 \\
-3 & 7 & -1 & 2 \\
0 & 1 & -4 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -3 & 3 & -2 \\
0 & -2 & 8 & -4 \\
0 & 1 & -4 & 3
\end{array}\right] R_{2}+3 R_{1}} \\
& \rightarrow\left[\begin{array}{cccc}
1 & -3 & 3 & -2 \\
0 & 0 & 0 & 2 \\
0 & 1 & -4 & 3
\end{array}\right] R_{2}+2 R_{3} \rightarrow\left[\begin{array}{cccc}
1 & -3 & 3 & -2 \\
0 & 1 & -4 & 3 \\
0 & 0 & 0 & 2
\end{array}\right] I \\
& \\
& \rightarrow\left[\begin{array}{cccc}
1 & -3 & 3 & -2 \\
0 & 1 & -4 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]_{\frac{1}{2} R_{3}} \rightarrow\left[\begin{array}{ccccc}
1 & -3 & 3 & 0 \\
0 & 1 & -4 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
R_{1}+2 R_{3} \\
R_{2}-3 R_{3}
\end{array}
\end{aligned}
$$

There is a free column socolumn are not linearly independent. Or four rectors not linearly independent. Or four rectors

1) (a) When does $\left[\begin{array}{cc}1 & -3 \\ -3 & 9 \\ 2 & -6\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{c}5 \\ -7 \\ h\end{array}\right]$ have hasolution?

$$
\left[\begin{array}{cc|c}
1 & -3 & 5 \\
-3 & 9 & -7 \\
2 & -6 & h
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -3 & 5 \\
0 & 0 & 8 \\
0 & 0 & h-10
\end{array}\right] \begin{array}{lll}
R_{2}+3 R_{1} \\
R_{3}-2 R_{1} &
\end{array} \quad h=10
$$

10) is solved the same way.
The answer is for 10a) no possible h
and 10 b) all h and 10b) all h
(6) When does $\left[\begin{array}{ccc}1 & -3 & 5 \\ -3 & 9 \\ 2 & -6 & -7\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ have a nontrivial solution?

$$
\left.\left[\begin{array}{ccc}
1 & -3 & 5 \\
-3 & 9 & -7 \\
2 & -6 & h
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -3 & 5 \\
0 & 0 & 8 \\
0 & 0 & h-10
\end{array}\right] R_{R_{3}+2 R_{1}}+\left[\begin{array}{ccc}
1 & -3 & 5 \\
0 & 0 & 1 \\
0 & 0 & h-10
\end{array}\right]\right]^{\frac{1}{R_{2}}} \rightarrow\left[\begin{array}{ccc}
1 & -3 & 0 \\
0 & 0 & 1 \\
0 & 0 & h-10
\end{array} R^{R_{1}-5 R_{2}}\right.
$$

has a nontrivial solution for all h
34) Tue, since if $v_{3}=0$, then $O v_{1}+O v_{2}+I_{3}+O v_{4}=0$.
36) False, $v_{1}=(1,1,1,1), v_{2}=(1,1,1,1), v_{3}=(1,1,1,0), v_{4}=(1,1,1,1)$
38) The. If v_{1}, \ldots, v_{4} are linearly independent, then $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=0$ only has the solution $c_{1}=c_{2}=c_{3}=c_{4}=0$. Wed $c_{1} v_{1}, v_{2}, v_{3}$ are a bo linearly independent. If not, then $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$ for c_{1}, c_{2}, c_{3} notall zero. But then, $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+0 v_{4}=0$ for c_{1}, c_{2}, c_{3} not all zero, which contradicts the linear ind pendent of $v_{1}, v_{2}, v_{3}, v_{4}$. So by contradiction, v_{1}, v_{2}, v_{3} are linearly independent too.
Section $2.11,8,9,10,27$
1)

$$
\begin{aligned}
& -2 A=-2\left[\begin{array}{ccc}
2 & 0 & -1 \\
4 & -5 & 2
\end{array}\right]=\left[\begin{array}{ccc}
-4 & 0 & 2 \\
-8 & 10 & -4
\end{array}\right] \\
& B-2 A=\left[\begin{array}{ccc}
7 & -5 & 1 \\
1 & -4 & -3
\end{array}\right]-2\left[\begin{array}{ccc}
2 & 0 & -1 \\
4 & -5 & 2
\end{array}\right]=\left[\begin{array}{ccc}
3 & -5 & 3 \\
-7 & 6 & -7
\end{array}\right]
\end{aligned}
$$

$A C=$ undefined since A is 2×3 and C is 2×2

$$
C D=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
3 & 5 \\
-1 & 4
\end{array}\right]=\left[\begin{array}{cc}
1 & 13 \\
-7 & -6
\end{array}\right]
$$

8) If $B C$ is 3×4, then B has 3 rows.
9)

$$
\begin{array}{rlr}
{\left[\begin{array}{cc}
2 & 5 \\
-3 & 1
\end{array}\right]\left[\begin{array}{cc}
4 & -5 \\
3 & k
\end{array}\right]} & =\left[\begin{array}{cc}
4 & -5 \\
3 & k
\end{array}\right]\left[\begin{array}{cc}
2 & 5 \\
-3 & 1
\end{array}\right] & \\
{\left[\begin{array}{cc}
23 & 5 k-10 \\
-9 & k+15
\end{array}\right]} & =\left[\begin{array}{cc}
23 & 15 \\
-3 k+6 & k+15
\end{array}\right] & \text { need } 5 k-10=15 \\
-3 k+6=-9
\end{array}
$$

10)

$$
\begin{aligned}
& A B=\left[\begin{array}{cc}
2 & -3 \\
-4 & 6
\end{array}\right]\left[\begin{array}{cc}
8 & 4 \\
5 & 5
\end{array}\right]=\left[\begin{array}{cc}
1 & -7 \\
-2 & 14
\end{array}\right] \\
& A C=\left[\begin{array}{cc}
2 & -3 \\
-4 & 6
\end{array}\right]\left[\begin{array}{cc}
5 & -2 \\
3 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & -7 \\
-2 & 14
\end{array}\right]
\end{aligned}
$$

27)

$$
\begin{gathered}
A C=\left[\begin{array}{ll}
-4 & 6
\end{array}\right]\left[\begin{array}{ll}
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
-2 & 14
\end{array}\right] \\
U=\left[\begin{array}{c}
-2 \\
3 \\
-4
\end{array}\right] \quad V=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] U^{\top} V=\left[\begin{array}{lll}
-2 & 3 & -4
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=[-2 a+3 b \\
V^{\top} U=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{c}
-2 \\
3 \\
-4
\end{array}\right]=\left[\begin{array}{ll}
-2 a+3 b-4 c
\end{array}\right] \\
U V^{\top}=\left[\begin{array}{l}
-2 \\
3 \\
-4
\end{array}\right]\left[\begin{array}{lll}
a & b & c
\end{array}\right]=\left[\begin{array}{ccc}
-2 a & -2 b & -2 c \\
3 a & 3 b & 3 c \\
-4 a & -4 b & -4 c
\end{array}\right] \\
V U^{\top}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\left[\begin{array}{lll}
-2 & 3 & -4
\end{array}\right]=\left[\begin{array}{lll}
-2 a & 3 a & -4 a \\
-2 b & 3 b & -46 \\
-2 c & 3 c & -4 c
\end{array}\right]
\end{gathered}
$$

Section 2.2 3, 6, 14,22,32
3)

$$
\begin{aligned}
& {\left[\begin{array}{cc|cc}
8 & 5 & 1 & 0 \\
-7 & -5 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc|cc}
1 & 0 & 1 & 1 \\
-7 & -5 & 0 & 1
\end{array}\right] R_{1}+R_{2}} \\
& \rightarrow\left[\begin{array}{cc|cc}
1 & 0 & 1 & 1 \\
0 & -5 & 7 & 8
\end{array}\right] R_{2}+7 R_{1} \rightarrow\left[\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 1 \\
-\frac{7}{5} & -\frac{8}{5}
\end{array}\right]-\frac{1}{5} R_{2} \\
& {\left[\begin{array}{cc}
1 & 1 \\
-\frac{7}{5} & -\frac{8}{5}
\end{array}\right]}
\end{aligned}
$$

6)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
8 & 5 \\
-7 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] }=\left[\begin{array}{c}
-9 \\
11
\end{array}\right] \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] }=\left[\begin{array}{cc}
1 & 1 \\
-\frac{7}{5} & -\frac{8}{5}
\end{array}\right]\left[\begin{array}{c}
-9 \\
11
\end{array}\right]=\left[\begin{array}{c}
2 \\
-5
\end{array}\right] \\
& x_{1}=2, x_{2}=-5
\end{aligned}
$$

14) $(B-C) D=O \Rightarrow(B-C) D D^{-1}=O D^{-1} \Rightarrow(B-C) I=O \Rightarrow B-C=O$ $B=C$
15) When the columns of an $n \times n$ matrix $\operatorname{span} \mathbb{R}^{n}$, there is a pivoting every row of the reduced row echelon form. Since A is square, the reduced rowechelon form of A is the id entity, which implies that A is invertible.
16) $\left[\begin{array}{ccc|ccc}1 & -2 & 1 & 1 & 0 & 0 \\ 4 & -7 & 3 & 0 & 1 & 0 \\ -2 & 6 & -4 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}1 & -2 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & -4 & 1 & 0 \\ 0 & 2 & -2 & 2 & 0 & 1\end{array}\right] \begin{aligned} & R_{2}-4 R_{1} \\ & R_{3}+2 R_{1}\end{aligned}$
$\rightarrow\left[\begin{array}{ccc|ccc}1 & 0 & -1 & -7 & 2 & 0 \\ 0 & 1 & -1 & -4 & 1 & 0 \\ 0 & 0 & 0 & 10 & -2 & 1\end{array}\right] \begin{aligned} & R_{1}+2 R_{2} \\ & R_{3}-2 R_{2}\end{aligned}$ The matrix is notinvertible.

$$
\begin{aligned}
& {[c, A]=\left[\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
1 & -2
\end{array}\right]-\left[\begin{array}{cc}
2 & 0 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right]} \\
& =\left[\begin{array}{cc}
1 & -2 \\
-4 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 2 \\
4 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & -4 \\
-8 & -1
\end{array}\right] \\
& {[B,[C, A]]=\left[\begin{array}{ll}
3 & -1 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
1 & -4 \\
-8 & -1
\end{array}\right]-\left[\begin{array}{cc}
1 & -4 \\
-8 & -1
\end{array}\right]\left[\begin{array}{ll}
3 & -1 \\
1 & -2
\end{array}\right]} \\
& =\left[\begin{array}{ll}
11 & -11 \\
17 & -2
\end{array}\right]-\left[\begin{array}{cc}
-1 & 7 \\
-25 & 10
\end{array}\right]=\left[\begin{array}{ll}
1 & 2
\end{array}-18 \text { 18 } 22 \begin{array}{ll}
12
\end{array}\right] \\
& {[A, B]=\left[\begin{array}{rr}
2 & 0 \\
1 & -2
\end{array}\right]\left[\begin{array}{ll}
3 & -1 \\
1 & -2
\end{array}\right]-\left[\begin{array}{ll}
3 & -1 \\
1 & -2
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
1 & -2
\end{array}\right]} \\
& =\left[\begin{array}{cc}
6 & -2 \\
1 & 3
\end{array}\right]-\left[\begin{array}{ll}
5 & 2 \\
0 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & -4 \\
1 & -1
\end{array}\right] \\
& {[C,[A, B]]=\left[\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & -4 \\
1 & -1
\end{array}\right]-\left[\begin{array}{ll}
1 & -4 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right]} \\
& =\left[\begin{array}{cc}
1 & -1 \\
-2 & 8
\end{array}\right]-\left[\begin{array}{ll}
8 & 1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-7 & -2 \\
-4 & 7
\end{array}\right] \\
& {[A,[B, C]]+[B,[C, A]]+[C,[A, B]]} \\
& =\left[\begin{array}{cc}
-5 & 20 \\
-38 & 5
\end{array}\right]+\left[\begin{array}{cc}
12 & -18 \\
42 & -12
\end{array}\right]+\left[\begin{array}{cc}
-7 & -2 \\
-4 & 7
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Or another approach...

$$
\begin{aligned}
& {[A,[B, C]]+[B,[C, A]]+[C,[A, B]] } \\
= & {[A, B C-C B]+[B, C A-A C]+[C, A B-B A] } \\
= & A(B C-C B)-(B C-C B) A+B(C A-A C)-(C A-A C) B+C(A B-B A)-(A B-B A) \\
= & A B C-A C B-B C A+C B A+B C A-B A C-C A B+A C B+C A B-C B A-A B C+B A \\
= & O \text { (ternscancel painwise) }
\end{aligned}
$$

2) (a) $\binom{a_{n}}{a_{n-1}}=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\binom{a_{n-1}}{a_{n-2}}$ since $\binom{a_{n}}{a_{n-1}}=\binom{a_{n-1} a_{n-2}}{a_{n-1}}$
so $F=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$.

$$
\begin{aligned}
& \text { (6) } F^{2}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad F^{4}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right) \\
& F^{8}=\left(\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right)\left(\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right)=\left(\begin{array}{ll}
34 & 21 \\
21 & 1
\end{array}\right) \quad F^{16}=\left(\begin{array}{ll}
34 & 21 \\
21 & 11
\end{array}\right)\left(\begin{array}{ll}
34 & 21 \\
21 & 13
\end{array}\right)=\left(\begin{array}{ll}
1597 & 987 \\
987 & 610
\end{array}\right) \\
& F^{32}=\left(\begin{array}{lll}
1597 & 987 \\
987 & 61 & 0
\end{array}\right)\left(\begin{array}{lll}
15977 & 987 \\
987 & 610
\end{array}\right)=\left(\begin{array}{ll}
3524578 & 217809 \\
2178309 & 1346269
\end{array}\right) \\
& \text { So }\binom{a_{33}}{a_{32}}=\left(\begin{array}{lll}
3524578 & 2178309 \\
2178309 & 1346269
\end{array}\right)\binom{a_{1}}{a_{0}} \\
& a_{33}=3524578 a_{1}+2178309 a_{0} \\
& a_{32}=2178309 a_{1}+1346269 a_{0}
\end{aligned}
$$

3) (a) If two of the ai are the same, then two nous of the Vandermondematix are identical. But a matrix with two identical rows is not invertible.
(b) Let $f(x)=b_{1}+b_{2} x+\ldots+b_{n-1} x^{n-1}$ be a polynomial with n distinct roots, $x_{1}, x_{2}, \ldots, x_{n}$. Then,

$$
\begin{array}{r}
b_{1}+b_{2} x_{1}+\ldots+b_{n-1} x_{1}^{n-1}=0 \\
b_{1}+b_{2} x_{2}+\ldots+b_{n-1} x_{2}^{n-1}=0 \\
\vdots \vdots \\
\vdots \\
b_{1}+b_{2} x_{n}+\ldots+b_{n-1} x_{n}^{n-1}=0
\end{array} \Rightarrow\left[\begin{array}{cccc}
1 & x_{1} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & \ldots & x_{2}^{n-1} \\
& \vdots & \mid \\
1 & x_{n} \ldots x_{n}^{n-1}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
1 \\
b_{n-1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

But the coefficient matrix A is a Vandermonde matrix, andsince $x_{1}, x_{2}, \ldots, x_{n}$ are distinct, A is invertible. So by the Invertible Matrix Theorem, the only solution is $\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n-1}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ 0\end{array}\right]$ so $f(x)=0$.

$$
\begin{aligned}
& \text { 4) } \\
& {\left[\begin{array}{ccc|ccc}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 & 0 & 1
\end{array}\right] R_{1}+R_{2}} \\
& \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -2 & -2 & 1
\end{array}\right] R_{3}-2 R_{1} \quad A^{-1}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
-2 & -2 & 1
\end{array}\right] \\
& D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \quad D^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \\
& \left(A^{-1} D A\right)^{2019}=A^{-1} D^{2019} A \quad(A-1 D A)^{2}=A^{-1} P \underbrace{A-1}_{I} P A=A^{-1} D^{2} A \\
& =A^{-1}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]^{2019} A \quad\left(A^{-1} D A\right)^{3}=A^{-1} D \frac{A A^{-1}}{I} \frac{I}{I} A A^{-1} \cdot D A=A^{-1} D^{3} A \\
& =A^{-1}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
-2 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & -1 & 0 \\
-2 & 2 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & -1 & 0 \\
-4 & 4 & -1
\end{array}\right]
\end{aligned}
$$

