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What is a partial differential equation?

Over the course of linear algebra and differential equations, we have
studied many different types of functions. We have thought of functions
abstractly as “machines” that take in a certain input and give out a
certain output.

Examples of functions in linear algebra

Real-valued functions f : R→ R
The matrix multiplication map given by an m by n matrix,
T : Rn → Rm

A linear transformation between two abstract vector spaces,
T : V →W

A linear functional ` : V → R
Complex-valued functions for Fourier series, f : [−π, π)→ C
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However, there is one important class of functions that we are missing.

Many physical applications involve real-valued functions defined in
multi-dimensional space. These are functions that send each point in Rn

to a real number.

The temperature distribution in space is given by a function
T : R3 → R
The profit function given certain variables, P : Rn → R
Chemical concentration as a function of (x , y) position, F : R2 → R

Just as for ordinary differential equations, many of these quantities satisfy
differential equations. However, since these are multi-dimensional
functions now, we have to understand what it means to take the derivative
of a multi-dimensional function.
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Visualizing Multi-Dimensional Functions

First, let’s start by considering functions of the form f : R2 → R. For
example, let us consider

f (x , y) = x2 + y2

How can we visualize this?

Figure: The graph of f (x , y) = x2 + y2
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How to understand a multi-dimensional derivative

We can understand derivatives as slopes of tangent lines, but there are
many different tangent lines here!

Figure: The graph of f (x , y) = x2 + y2 with partial x derivative tangent line
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How to understand a multi-dimensional derivative

We can understand derivatives as slopes of tangent lines, but there are
many different tangent lines here!

Figure: The graph of f (x , y) = x2 + y2 with partial y derivative tangent line
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How to understand a multi-dimensional derivative

We can understand derivatives as slopes of tangent lines, but there are
many different tangent lines here!

Figure: The graph of f (x , y) = x2 + y2 with partial x (blue), y (green) derivative
tangent lines
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Partial derivatives

So there are many different tangent lines to a function f (x , y) at any
given point!

Since the x and y directions span R2, we are particularly

interested in the tangent line where y is kept constant and the tangent
line where x is kept constant. These are defined as partial derivatives of

a function, and are denoted by ∂x f and ∂y f respectively.
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Partial derivatives

To take a partial derivative, differentiate with respect to the desired
variable, and treat all other variables as “constants”.

Examples
∂
∂x (e2xy2) = 2e2xy2

∂
∂y (e2xy2) = 2e2xy

∂
∂x (sin(xy2)) = y2cos(xy2)
∂
∂y (sin(xy2)) = 2xycos(xy2)
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What is a partial differential equation?

A partial differential equation is a equation involving a condition on the
partial derivatives of a function.

Important Partial Differential Equations

Laplace’s equation (chemical equilibrium, wave physics) ∆f = 0

Laplace eigenvalue equation (vibration and resonance, electron
orbitals) −∆f = λf

Heat equation (chemistry, thermodynamics) ∂t f −∆f = 0

Wave equation (physics) ∂2
t f −∆f = 0

Burger’s equation (gas dynamics) ∂t f + f ∂x f = 0

And more! (Navier-Stokes equation for fluid flow, civil engineering,
mechanical engineering; Korteweg-deVries equation for water waves;
Einstein’s equation for cosmology and general relativity)
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Definitions

Let’s first start with some basic definitions.

Definition

The Laplacian is a second order partial differential operator, given in Rn by

∆ =
∂

∂x1

2

+
∂

∂x2

2

+ ...+
∂

∂xn

2

We will consider the case of n = 2, since we are considering functions
f (x , y). In this case,

∆f = ∂2
x f + ∂2

y f =
∂2f

∂x2
+
∂2f

∂y2

Definition

A harmonic function on Rn is a function f such that ∆f = 0. So harmonic
solutions are solutions to Laplace’s partial differential equation ∆f = 0.
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Physical interpretation of Laplace’s equation

∆f = 0 (Laplace’s equation)

Laplace’s equation describes equilibrium states. It can represent for
example the equilibrium state of a chemical, where there are varying
concentrations of the chemical over all of R2.

To see this mathematically, use the divergence theorem. On any smooth
region U, ˆ

U
∆udx =

ˆ
U

div(∇u)dx =

ˆ
∂U
∇u · ndS

so if ∆u = 0, then ˆ
∂U
∇u · ndS = 0

which means there is no net flux (no net diffusion) in or out of any region.
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Examples of harmonic functions

Examples

Here are examples of harmonic functions:

f (x , y) = c where c is a constant

f (x , y) = ax + by + c , any linear function of x and y

f (x , y) = x2 − y2

f (x , y) = excos(y)

f (x , y) = x3 − 3xy2
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Examples of harmonic functions

Figure: The harmonic function f (x , y) = x2 − y2
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Examples of harmonic functions

Figure: The harmonic function f (x , y) = excos(y)
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Examples of harmonic functions

Figure: The harmonic function f (x , y) = x3 − 3xy2
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Mean value principle

Mean value principle

Let f be a harmonic function on Rn. Then f satisfies the mean value
property:

f (x) =

 
∂B(x ,r)

f (y)dy

f (x) =

 
B(x ,r)

f (y)dy

In words, the average value of f on any ball or on any circle is exactly
equal to the value of f at the center of the ball or circle.

If we remember the physical interpretation of f as an equilibrium, this
makes sense.
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Maximum and minimum principle

We can use the mean value theorem to deduce the following.

Maximum and minimum principle

Let f be a harmonic function on Rn. The maximum of f on any ball
cannot occur on the boundary unless f is constant. The same statement
holds for minima.

maxy∈B(x ,r)f (y) = maxy∈∂B(x ,r)f (y)

miny∈B(x ,r)f (y) = miny∈∂B(x ,r)f (y)

This makes sense physically. It is not possible for a nonconstant equilibrium
state to have a point at which a chemical concentration is largest or
smallest, else diffusion would cause the state to not be equilibrium.

Kuan, Jeffrey A Visual Introduction to PDE Aug 13, 2019 21 / 54



Maximum and minimum principle

We can use the mean value theorem to deduce the following.

Maximum and minimum principle

Let f be a harmonic function on Rn. The maximum of f on any ball
cannot occur on the boundary unless f is constant. The same statement
holds for minima.

maxy∈B(x ,r)f (y) = maxy∈∂B(x ,r)f (y)

miny∈B(x ,r)f (y) = miny∈∂B(x ,r)f (y)

This makes sense physically. It is not possible for a nonconstant equilibrium
state to have a point at which a chemical concentration is largest or
smallest, else diffusion would cause the state to not be equilibrium.

Kuan, Jeffrey A Visual Introduction to PDE Aug 13, 2019 21 / 54



Regularity

Remembering that Laplace’s equation is ∆f = 0, a solution to Laplace’s
equation is only required to have two derivatives to make sense.

However, we have the following amazing fact.

Regularity of solutions to Laplace’s equation

Every solution to the Laplace’s equation has infinitely many derivatives,
and has a convergent Taylor series in a neighborhood around every point.

This fact is called regularity. The actual solutions to the equation have
much more smoothness than is required by the actual equation itself.
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Definitions

Dirichlet eigenvalues of the Laplacian ∆

Let Ω be any open set in Rn. Dirichlet eigenvalue equation for the
Laplacian ∆ is

−∆f = λf on Ω

f |∂Ω = 0

where λ is the associated eigenvalue for the eigenfunction f . So we are
looking for eigenfunctions that are zero on the boundary of the set we are
considering.

You can think of this as the resonant frequencies emitted by a drum that
is struck whose surface has the shape given by the set Ω in R2, where the
eigenvalues λ are the resonant pitches (frequencies).

Kuan, Jeffrey A Visual Introduction to PDE Aug 13, 2019 24 / 54



Why is this equation important?

Decomposition into resonant frequencies is related to Fourier series and
spectral decomposition.

Example

In one dimension (so on R), the Laplacian is just a second derivative. If we
consider the set Ω = (0, 1), note that sin(nπx) are Dirichlet eigenfunctions
of −∆ on Ω since

−∆(sin(nπx)) = (n2π2)sin(nπx)

sin(nπx) = 0 at x = 0, 1

The eigenvector fn = sin(πnx) corresponds to the eigenvalue n2π2, n ≥ 1.
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Dirichlet eigenfunctions for −∆ on Ω = (0, 1) in R

Figure: The first five Dirichlet eigenvalues of −∆ on (0, 1) in R.

These represent the vibrations of a string that is held still at x = 0, 1.
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Dirichlet eigenfunctions for −∆ on a square in R2

Now consider Ω to be the square (0, 1)× (0, 1) in R2. Let’s consider the
Dirichlet eigenfunctions here.

Using a technique in PDEs known as separation of variables, where we
guess solutions to the PDE of the form f (x , y) = g(x)h(y), we can see
that the Dirichlet eigenfunctions for −∆ here are

fm,n(x , y) = sin(mπx)sin(nπy), where m, n ≥ 1

A simple calculation shows that this has associated eigenvalue

λ = (m2 + n2)π2

So the smallest eigenvalue λmin is 2π2.
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First four Dirichlet eigenvalues for −∆ on the square in R2

Figure: An eigenfunction f (x , y) = sin(πx)sin(πy) of −∆ for the smallest
Dirichlet eigenvalue 2π2.

These represent vibrations of a square drum held taut at its boundary.
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First four Dirichlet eigenvalues for −∆ on the square in R2

Figure: An eigenfunction f (x , y) = sin(2πx)sin(πy) of −∆ for the second
smallest Dirichlet eigenvalue 5π2.

These represent vibrations of a square drum held taut at its boundary.
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First four Dirichlet eigenvalues for −∆ on the square in R2

Figure: An eigenfunction f (x , y) = sin(2πx)sin(2πy) of −∆ for the third smallest
Dirichlet eigenvalue 8π2.

These represent vibrations of a square drum held taut at its boundary.
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First four Dirichlet eigenvalues for −∆ on the square in R2

Figure: An eigenfunction f (x , y) = sin(3πx)sin(πy) of −∆ for the fourth smallest
Dirichlet eigenvalue 10π2.

These represent vibrations of a square drum held taut at its boundary.
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Minimax principle

These graphs lead us to an interesting observation.

Minimax principle

Any eigenfunction of −∆ on Ω for the smallest Dirichlet eigenvalue λmin

does not change sign.
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An application of Rayleigh’s principle

As a separate note about these eigenfunctions, recall Rayleigh’s principle
for a symmetric matrix

λmin = minv 6=0,v∈V
〈Av , v〉
〈v , v〉

Rayleigh’s principle applied to the Laplacian (which is symmetric as an
operator) leads to the following comparison theorem.

Comparison theorem

If Ω ⊂ Ω̃ are sets in Rn, then if λmin,Ω and λmin,Ω̃ represent the minimum

Dirichlet eigenvalues for −∆ on Ω and Ω̃ respectively, then

λmin,Ω̃ ≤ λmin,Ω

In other words, bigger drums vibrate at lower pitches.

Kuan, Jeffrey A Visual Introduction to PDE Aug 13, 2019 33 / 54



An application of Rayleigh’s principle

As a separate note about these eigenfunctions, recall Rayleigh’s principle
for a symmetric matrix

λmin = minv 6=0,v∈V
〈Av , v〉
〈v , v〉

Rayleigh’s principle applied to the Laplacian (which is symmetric as an
operator) leads to the following comparison theorem.

Comparison theorem

If Ω ⊂ Ω̃ are sets in Rn, then if λmin,Ω and λmin,Ω̃ represent the minimum

Dirichlet eigenvalues for −∆ on Ω and Ω̃ respectively, then

λmin,Ω̃ ≤ λmin,Ω

In other words, bigger drums vibrate at lower pitches.

Kuan, Jeffrey A Visual Introduction to PDE Aug 13, 2019 33 / 54



Table of Contents

1 A brief introduction to PDEs

2 Laplace’s equation

3 Laplace’s eigenvalue equation

4 Heat equation

5 Wave equation

Kuan, Jeffrey A Visual Introduction to PDE Aug 13, 2019 34 / 54



Definitions

The heat equation is what is known as an evolution equation. This
means we consider solutions to be functions u(t, x), where t, x ∈ R. In
other words, the heat equation describes a time process.

So we can view u(x , t) in two ways.

u can be seen as a function on R2, (t, x).

Or u can be seen as a function that for each value of t ∈ R, gives a
heat distribution in x that sends R to R.
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The heat equation

The heat equation

∂tu(t, x)−∆u(t, x) = 0

We consider a solution u(t, x) that satisfies an initial condition
u(0, x) = f (x), which describes a starting distribution of heat.

Remark

The steady state to the heat equation is an equilibrium state of Laplace’s
equation. If u is a steady state, then the change in time is zero, so the
heat equation reduces to −∆u = 0, which is Laplace’s equation.
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A brief remark on how to solve it

Although the heat equation can be solved using Fourier series, it is best
solved by a tool called the Fourier transform.

The Fourier transform

The Fourier transform F is defined by

F(f ) = f̂ (ξ) =

ˆ ∞
−∞

f (x)e−ixξdx

In some special cases (for Schwartz functions), the Fourier transform has
an inverse Fourier transform, given by

F−1(g) = g∨(x) =
1

2π

ˆ ∞
−∞

g(ξ)e ixξdξ
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A brief remark on how to solve it

Taking the spatial Fourier transform of the heat equation gives

∂tu(t, x)−∆u(t, x) = 0 =⇒ ∂t û(t, ξ) + ξ2û(t, ξ) = 0

u(0, x) = f (x) =⇒ û(0, ξ) = f̂ (ξ)

This is an ordinary differential equation that can be easily solved as

û(t, ξ) = f̂ (ξ)e−ξ
2t

Taking the inverse Fourier transform, we get the following formula for the
solution the heat equation.
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Solution to the heat equation

Solution to the heat equation

The solution to ∂tu −∆u = 0 with u(0, x) = f (x) as an initial condition is

u(t, x) = f (x) ∗ K (x , t) =

ˆ ∞
−∞

f (x − y)K (y , t)dy

where K (x , t) is the heat kernel

K (x , t) =
1√
4πt

e−
x2

4t

The ∗ operation defined above is called convolution.

If you have taken statistics, you might notice that the heat kernel is a
Gaussian. The Gaussian is special since it is its own Fourier transform.
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The heat kernel

The heat kernel gives the heat distribution where the initial condition is
that u(0, x) = δ(x), where δ(x) is what is called a Dirac delta function.
This is a ”function” that is zero everywhere, except for an infinite peak at
x = 0.

So you can think of the heat kernel as the distribution of heat over time if
you light a match at a single point in space, and there is no other heat
source.
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The heat kernel

The convolution operation that gives the solution to the heat equation
generally tends to “smooth out” functions over time, which can be seen
from the ModHeatEq.gif below.

You can see that the heat equation solutions have infinite speed of
propagation. Changes in heat are instantly registered everywhere.

HeatKernel.gif

ModHeatEq.gif (Solution to the heat equation for initial function

f (x) = sin(3x)
1+x2 )
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Definitions

The wave equation looks like the heat equation, except it now has two time
derivatives. This subtle difference makes a huge difference, as we will see.

Definition

The wave equation is given by

∂2
t u −∆u = 0

with initial conditions u(0, x) = f (x) and ∂tu(0, x) = g(x). So we are
given an initial configuration of the wave and an initial speed at every
point. We are solving for u(t, x).

The partial differential operator ∂2
t −∆ is called the D’Alembertian,

denoted by �. So the wave equation can be written as �u = 0,
u(0, x) = f (x), ∂tu(0, x) = g(x).
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Solution to the wave equation

We will consider u(x , t) where t and x are real numbers. So the wave
equation is just

∂2
t u(x , t)− ∂2

xu(x , t) = 0

In this case, there is a closed form expression for the solution.

Solution to the wave equation in one spatial dimension

u(x , t) =
f (x − t) + f (x + t)

2
+

1

2

ˆ t

−t
g(x + s)ds
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A brief remark on how to solve it

We quickly outline how to solve it.

Note that the equation is the same as (∂t − ∂x)(∂t + ∂x)u = 0.

Note that ∂t − ∂x is a directional derivative in the (1,−1) direction.
So (∂t + ∂x)u is constant along lines of slope (1,−1).

Use the fundamental theorem of calculus and the fact that ∂t + ∂x is
a directional derivative in the (1, 1) direction to solve for u.
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Huygen’s principle

Recall the solution for the wave equation

u(x , t) =
f (x − t) + f (x + t)

2
+

1

2

ˆ t

−t
g(x + s)ds

where f (x) and g(x) represent the initial configuration and velocity of the
wave at t = 0. Note that u only depends on the value at f at x − t and
x + t and the values of g between x − t and x + t.

Huygen’s principle

The value u(x , t) of a wave only depends on the values of f and g
between x − t and x + t.

In particular, given initial data at some point x0, this initial data at x0

cannot influence the behavior of the wave at u(x , t) until times past
t = |x − x0|. This is called finite speed of propagation.

In particular, it takes time for a disturbance to travel to another point on a
wave.
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A visual illustration of Huygen’s principle

WaveEq.gif

Let us look at the solution to the wave equation for

f (x) = 1− x , 0 ≤ x ≤ 1 f (x) = 1 + x ,−1 ≤ x ≤ 0, g(x) = 0
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A visual illustration of Huygen’s principle

WaveSine.gif

Let us look at the solution to the wave equation for

f (x) =
sin(2x)

1 + x2
g(x) = 0
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A visual illustration of Huygen’s principle

WaveSine.gif

Let us look at the solution to the wave equation for

f (x) =
sin(2x)

1 + x2
g(x) = 0
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Traveling wave solutions

Finally, we note that the wave equation admits traveling wave solutions,
which are solutions that travel without changing shape.

Traveling waves

For any smooth functions h1 and h2, the wave equation admits traveling
wave solutions of the form

u(x , t) = h1(x − t) + h2(x + t)

h1(x − t) is a wave moving to the right with velocity 1, and h2(x + t) is a
wave moving to the left with velocity 1.

Traveling wave solutions to wave equations are of special interest, and give
rise to stationary wave phenomena, such as that of solitons in water
waves, which are water waves that retain their shape while traveling.
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Traveling waves in opposite directions pass each other
without interacting

Travel.gif
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