Math 1B: Review Session

Jeffrey Kuan January 31, 2019

Question 1

Using the table below, approximate

$$\int_{2}^{4} f(x)dx$$

using the trapezoidal rule for n = 4.

X	2	2.25	2.5	2.75	3	3.25	3.5	3.75	4
f(x)	1	2		0	3	2	0	-2	-3

Now, suppose you know that $|f''(x)| \le 10$ on [2, 4]. What n is needed to ensure that the size of the error for your approximation is less than 0.001?

Question 2

Suppose you know that g(2) = -1. Using the table below, approximate the value of g(7), using the midpoint rule for n = 5.

X	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
g'(x)		3	-2		0	2	2	1	3	5	-3

Now, suppose you know that $|g^{(3)}(x)| \le 4$ on [2,7]. What n is needed to ensure that your approximation for g(7) is within 0.001 of the actual value of g(7)?

Question 3

What n is needed so that the approximation using Simpson's rule for

$$\int_{-3}^{4} x^2 e^{2x} + \cos(x) dx$$

is within 0.001 of the actual value?

Question 4

What n is needed so that the approximation using the trapezoidal rule for

$$\int_{-5}^{2} e^{-x} + x^{2} \sin(x) + \ln(3-x) dx$$

is within 0.001 of the actual value?

Question 5

Let L_4 , R_4 , M_4 , and T_4 be the approximations using the left endpoint, right endpoint, midpoint, and trapezoidal approximations for

$$\int_{1}^{5} \sin(2x) + 3x^2 dx$$

Which ones are overestimates and which ones are underestimates?

Question 6

Integrate the following "snack-bite" integrals.

$$\int \frac{1}{2x-1} + \frac{3}{(2x-1)^4} dx$$

$$\int \frac{x+3}{x^2+16} dx$$

$$\int \frac{3x-1}{x^2-4x+20} dx$$

Question 7

Compute

$$\int \frac{2x^3 + 9x + 1}{(x^2 + 4)^2} dx$$

Question 8

Do the following improper integrals converge or diverge?

$$\int_{1}^{\infty} \frac{3 + \sin(3x)}{e^{4x}} dx$$

$$\int_{0}^{2} \frac{\pi + \arctan(x)}{\sqrt{x}} dx$$

$$\int_{3}^{\infty} \frac{x - 1}{x^4 + x^2} dx$$

$$\int_{-1}^{0} \frac{e^{1/x}}{x^3} dx$$

(From the textbook, pg. 535)

Question 9

Find the arc length of

$$f(x) = \frac{1}{3}(x+1)^3 + \frac{1}{4(x+1)}$$

from x = 1 to x = 3.

Question 10

Find the surface area of the surface of revolution obtained by revolving the curve

$$f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$$

from x = -1 to x = 1 around the x-axis.

		,	