Math 1A: Midterm Review Problems Solutions

Jeffrey Kuan

September 21, 2018

Question 1

We find the domain of

$$
f(x)=\frac{\ln \left(x^{2}-4\right)}{x^{2}}
$$

We must have that $x^{2}-4>0$. Factoring, we have that $(x-2)(x+2)>0$. So then that means $x>2$ or $x<-2$. We also have $x^{2} \neq 0$, so that $x \neq 0$. However, this is already excluded by the condition $x^{2}-4>0$.

So the domain is $x>2$ or $x<-2$, also written as $(-\infty,-2) \cup(2, \infty)$.

Question 2

First, find the domain of

$$
f(x)=\frac{x}{1-\tan (x)}
$$

We must have that $1-\tan (x) \neq 0$, so that $\tan (x) \neq 1$. Then, that means that

$$
x \neq \frac{\pi}{4}+\pi k
$$

for integers k. So the domain of f is

$$
x \neq \frac{\pi}{4}+\pi k
$$

for integers k.
The domain of

$$
g(x)=\frac{\sqrt{x}}{1-\tan (x)}
$$

is indeed different, because the square root introduces the restriction that $x \geq 0$. So the domain is now

$$
x \neq \frac{\pi}{4}+\pi k
$$

for nonnegative integers k. (So $x \neq \frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4}, \ldots$).

Question 3

We compute

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{\sqrt{x^{2}+5}}{\cos (\pi x)}=\frac{\lim _{x \rightarrow 2} \sqrt{x^{2}+5}}{\lim _{x \rightarrow 2} \cos (\pi x)}=\frac{\sqrt{\lim _{x \rightarrow 2}\left(x^{2}+5\right)}}{\lim _{x \rightarrow 2} \cos (\pi x)} \\
&=\frac{\sqrt{\lim _{x \rightarrow 2} x^{2}+\lim _{x \rightarrow 2} 5}}{\lim _{x \rightarrow 2} \cos (\pi x)}=\frac{\sqrt{4+5}}{1}=3
\end{aligned}
$$

Question 4

We compute

$$
\begin{aligned}
& \lim _{h \rightarrow 1} \frac{\sqrt{h^{2}+h+2}-2}{h-1} \\
& =\lim _{h \rightarrow 1} \frac{\sqrt{h^{2}+h+2}-2}{h-1}\left(\frac{\sqrt{h^{2}+h+2}+2}{\sqrt{h^{2}+h+2}+2}\right)=\lim _{h \rightarrow 1} \frac{\left(h^{2}+h+2\right)-4}{(h-1)\left(\sqrt{h^{2}+h+2}+2\right.} \\
& =\lim _{x \rightarrow 1} \frac{h^{2}+h-2}{(h-1)\left(\sqrt{h^{2}+h+2}+2\right.}=\lim _{h \rightarrow 1} \frac{(h-1)(h+2)}{(h-1)\left(\sqrt{h^{2}+h+2}+2\right)} \\
& =\lim _{h \rightarrow 1} \frac{h+2}{\sqrt{h^{2}+h+2}+2}=\frac{3}{\sqrt{4}+2}=\frac{3}{4}
\end{aligned}
$$

Question 5

We have that

$$
(f \circ f)(x)=\frac{1}{\frac{1}{x(x-4)}\left(\frac{1}{x(x-4)}-4\right)}
$$

We have that the domain of f is $x \neq 0, x \neq 4$. So to find the domain of $f \circ f$, we need to find when

$$
\frac{1}{x(x-4)}=0
$$

or

$$
\frac{1}{x(x-4)}=4
$$

The first equation has no solutions, as one can check. The second equation has solutions

$$
\begin{gathered}
x(x-4)=\frac{1}{4} \\
4 x^{2}-16 x-1=0 \\
x=\frac{16 \pm \sqrt{256+16}}{8}=2 \pm \frac{\sqrt{272}}{8}=2 \pm \frac{\sqrt{17}}{2}
\end{gathered}
$$

So the domain of $f \circ f$ is

$$
x \neq 0,4,2+\frac{\sqrt{17}}{2}, 2-\frac{\sqrt{17}}{2}
$$

We have that

$$
(g \circ g)(x)=2 \cos (2 \cos (x))
$$

The domain of $g \circ g$ is all real numbers.
We have that

$$
(f \circ g)(x)=\frac{1}{2 \cos (x)(2 \cos (x)-4)}
$$

To find the domain, we want to find when

$$
2 \cos (x)=0
$$

and

$$
2 \cos (x)=4
$$

and exclude these values. The first equation has solutions $x=\frac{\pi}{2}+k \pi$ for integers k, and the second equation (which is equivalent to $\cos (x)=2$) has no solutions (since the values of cosine are between -1 and 1 inclusive). So the domain of $f \circ g$ is

$$
x \neq \frac{\pi}{2}+k \pi
$$

for integers k.
Finally, we consider

$$
(g \circ f)(x)=2 \cos \left(\frac{1}{x(x-4)}\right)
$$

The domain of $g \circ f$ is $x \neq 0,4$ (from the restriction for the domain of f).

Question 6

We note that $y=|x|, y=3 x, y=\sqrt{x}$, and $y=2$ are all continuous functions, and since the sum of continuous functions is continuous, we have that $y=|x|+3 x+\sqrt{x}+2$ is a continuous function. Therefore,

$$
\lim _{x \rightarrow 0}(|x|+3 x+\sqrt{x}+2)=|0|+3(0)+\sqrt{0}+2=2
$$

Question 7

Remember that arccos takes values in $[0, \pi]$. We have that

$$
\arccos \left(\cos \left(\frac{10 \pi}{3}\right)\right)=\arccos \left(-\frac{1}{2}\right)=\frac{2 \pi}{3}
$$

Next, we have that

$$
\log _{3}\left(\tan \left(\frac{7 \pi}{6}\right)\right)=\log _{3}\left(\frac{1}{\sqrt{3}}\right)=-\frac{1}{2}
$$

Finally, we have that

$$
\sin \left(e^{\ln (\pi)-\ln (3)}\right)=\sin \left(e^{\ln (\pi / 3)}\right)=\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}
$$

Question 8

We use the Squeeze Theorem and the limit laws. We note that

$$
-1 \leq \cos \left(\frac{1}{x}\right) \leq 1
$$

so then

$$
-\sqrt{x} \leq \sqrt{x} \cos \left(\frac{1}{x}\right) \leq \sqrt{x}
$$

and since $\lim _{x \rightarrow 0}-\sqrt{x}=\lim _{x \rightarrow 0} \sqrt{x}=0$, by the Squeeze Theorem, we have that

$$
\lim _{x \rightarrow 0} \sqrt{x} \cos \left(\frac{1}{x}\right)=0
$$

In addition,

$$
-1 \leq \sin \left(\frac{1}{\sqrt{x}}\right) \leq 1
$$

and we can check that

$$
-|x| \leq x \sin \left(\frac{1}{\sqrt{x}}\right) \leq|x|
$$

In addition, $\lim _{x \rightarrow 0}-|x|=\lim _{x \rightarrow 0}|x|=0$, and so by the Squeeze Theorem,

$$
\lim _{x \rightarrow 0} x \sin \left(\frac{1}{\sqrt{x}}\right)=0
$$

Then using the limit laws,
$\lim _{x \rightarrow 0}\left[\sqrt{x} \cos \left(\frac{1}{x}\right)+x \sin \left(\frac{1}{\sqrt{x}}\right)\right]=\lim _{x \rightarrow 0} \sqrt{x} \cos \left(\frac{1}{x}\right)+\lim _{x \rightarrow 0} x \sin \left(\frac{1}{\sqrt{x}}\right)=0+0=0$

Question 9

We have that $f(0)=1$. To make f continuous at $x=0$, we want $\lim _{x \rightarrow 0} f(x)=$ $f(0)=1$. Therefore, we need

$$
\lim _{x \rightarrow 0^{-}} f(x)=1
$$

So we need

$$
\lim _{x \rightarrow 0^{-}} \frac{a e^{x}}{1+e^{x}}=\frac{a}{2}=1
$$

So to have f be continuous, we need $a=2$.

Question 10

We first have that
$\lim _{x \rightarrow \infty}\left[\frac{2 x^{2}+1}{3 x^{2}+2 x+\sqrt{x}+1}\right]=\lim _{x \rightarrow \infty}\left[\frac{\frac{2 x^{2}+1}{x^{2}}}{\frac{3 x^{2}+2 x+\sqrt{x}+1}{x^{2}}}\right]=\lim _{x \rightarrow \infty}\left[\frac{2+\frac{1}{x^{2}}}{3+\frac{2}{x}+\frac{1}{x^{3 / 2}}+\frac{1}{x^{2}}}\right]=\frac{2}{3}$
Next, we have that as $x \rightarrow-\infty$, $\arctan (x)$ gets closer and closer to $-\pi / 2$ but always still greater than $-\pi / 2$. So as $x \rightarrow-\infty, \pi / 2+\arctan (x)$ is positive and getting smaller and smaller. Therefore, as $x \rightarrow-\infty$,

$$
\frac{1}{\frac{\pi}{2}+\arctan (x)}
$$

becomes 1 divided by something very small and positive. So

$$
\lim _{x \rightarrow-\infty}\left[\frac{1}{\frac{\pi}{2}+\arctan (x)}\right]=\infty
$$

Finally, for the last limit, we plug in $x=2$, and get $1 / 0$, which implies that we are looking at an infinite limit. We have that as $x \rightarrow 2^{+}$, the numerator is around 1 and $(x-2)^{5}$ becomes small and positive. When $x \rightarrow 2^{-}$, the numerator is around 1 and $(x-2)^{5}$ becomes small and negative. So we have

$$
\begin{aligned}
\lim _{x \rightarrow 2^{+}} \frac{\cos (\pi x)}{(x-2)^{5}} & =\infty \\
\lim _{x \rightarrow 2^{-}} \frac{\cos (\pi x)}{(x-2)^{5}} & =-\infty
\end{aligned}
$$

so since the limits are not both the same sign of infinity, the only thing we can say is that

$$
\lim _{x \rightarrow 2}\left[\frac{\cos (\pi x)}{(x-2)^{5}}\right]
$$

does not exist.

Question 11

We want to use the fact that

$$
\begin{gathered}
|x|=x \text { if } x \geq 0 \\
|x|=-x \text { if } x<0
\end{gathered}
$$

To consider whether the limit exists, we consider the left and right hand limits and see if they agree.

$$
\begin{gathered}
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=\lim _{x \rightarrow 0^{+}} 1=1 \\
\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=\lim _{x \rightarrow 0^{-}}-1=-1
\end{gathered}
$$

Since the left and right hand limits do not agree, we have that $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist.

The right and left hand limits of the second limit actually do exist and agree with each other.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{|x|+1}{x+1} & =\lim _{x \rightarrow 0^{+}} \frac{x+1}{x+1}=1 \\
\lim _{x \rightarrow 0^{-}} \frac{|x|+1}{x+1} & =\lim _{x \rightarrow 0^{-}} \frac{-x+1}{x+1}=1
\end{aligned}
$$

So therefore,

$$
\lim _{x \rightarrow 0} \frac{|x|+1}{x+1}=1
$$

Question 12

Continuity at $x=0$ means that $\lim _{x \rightarrow 0} f(x)=f(0)$. Since $f(0)=1$, it suffices to show that

$$
\lim _{x \rightarrow 0}\left(x^{2}+1\right)=1
$$

Consider any $\epsilon>0$. We want to find a $\delta>0$ so that if $0<|x-0|<\delta$, then $\left|\left(x^{2}+1\right)-1\right|<\epsilon$. Equivalently, we want to find a $\delta>0$ so that if $0<|x|<\delta$, then $\left|x^{2}\right|<\epsilon$.

We see that $\delta=\sqrt{\epsilon}$ works. We check this. If $0<|x|<\delta$, then $|x|<\sqrt{\epsilon}$, and then $\left|x^{2}\right|<\epsilon$ (since $\left|x^{2}\right|=|x|^{2}$).

Question 13

Note that $\arctan (x), e^{3 x}$, and -1 are all continuous functions, so $\arctan (x)+\left(e^{3 x}\right)-1$ is a continuous function. Since e^{x} is also continuous, we have that

$$
e^{\arctan (x)+\left(e^{3 x}\right)-1}
$$

is continuous since it is the composition of continuous functions. So then using continuity, we can evaluate the limit by just plugging in $x=0$. So

$$
\lim _{x \rightarrow 0} e^{\arctan (x)+\left(e^{3 x}\right)-1}=e^{\arctan (0)+e^{0}-1}=e^{0}=1
$$

Question 14

As $x \rightarrow 0^{+}$, we have that $\cos \left(x^{2}\right)$ is basically around $1=\cos (0)$, and $\frac{1}{\sqrt{x}}$ is going to positive infinity. Therefore,

$$
\lim _{x \rightarrow 0^{+}} f(x)=\infty
$$

So the limit does not exist, and is positive infinity.

Question 15

We start with $f(x)=\sqrt{x-2}+3$.

- We first shift down by 3 . Then, we get the graph of $y=\sqrt{x-2}$.
- We then shift to the left by 4 . Then, we get the graph of $y=\sqrt{(x+4)-2}=$ $\sqrt{x+2}$.
- We then reflect across the x axis. We then get the graph of $y=-\sqrt{x=2}$.
- We then use a vertical stretch by 2 . We finally end up with the graph of $y=-2 \sqrt{x+2}$.

