Math 54 Midterm 3 (Practice 4)
 Jeffrey Kuan

August 5, 2019

Name: \qquad
SSID: \qquad

Instructions:

- This exam is $\mathbf{1 2 0}$ minutes long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- There are 7 questions.
- The exam has a total of $\mathbf{2 0 0}$ points.
- Good luck!

Problem 1 (30 points)

Part (a)
Show that $T\left(x_{1}, x_{2}, x_{3}\right)=\left(-x_{3}, x_{1},-x_{2}\right)$ is an isometry on \mathbb{R}^{3}. [15 points]

Part (b)

Show that there is no value of a such that

$$
T\left(x_{1}, x_{2}\right)=\left(a x_{1}+3 x_{2}, a x_{1}+x_{2}\right)
$$

is an isometry on \mathbb{R}^{2}.

Problem 2 (30 points)

Consider the linear operator $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ given by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right]
$$

Calculate the determinant and trace of T. Calculate $\operatorname{char}_{T}(x)$.

Problem 3 (30 points)

Short proofs. [15 points each]

Part (a)

Define a negative definite matrix to be a symmetric n by n matrix A such that $\langle A v, v\rangle<0$ for all nonzero $v \in \mathbb{R}^{n}$. Prove that every diagonal entry of a negative definite matrix is negative.

Part (b)

Find, with proof, the distinct eigenvalues of a general lower triangular n by n matrix and their algebraic multiplicities.

Problem 4 (30 points)

Show that $\mathcal{C}=\{(1,1,1,0),(-2,1,1,0),(0,-1,1,0),(0,0,0,1)\}$ is an orthogonal basis for \mathbb{R}^{4}. Consider the linear transformation $T: P_{3} \rightarrow \mathbb{R}^{4}$ given by

$$
T(p(x))=\left[\begin{array}{c}
p(-10) \\
p(-1) \\
p(1) \\
p(10)
\end{array}\right]
$$

Find $[T]_{\mathcal{B} \rightarrow \mathcal{C}}$ where $\mathcal{B}=\left\{1, x, x^{2}, x^{3}\right\}$ is the standard basis for P_{3}.

Problem 5 (20 points)

Find all least squares solutions to the system $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left[\begin{array}{cccccc}
1 & 1 & 2 & -3 & 4 & 0 \\
-2 & -2 & -4 & 6 & -8 & 0
\end{array}\right]
$$

and $\mathbf{b}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$. What is the least squares error?

Problem 6 (30 points)

Let $\left\{v_{1}, v_{2}\right\}$ be an orthonormal basis for \mathbb{R}^{2}. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear operator and that $\left\{T v_{1}, T v_{2}\right\}$ is also an orthonormal basis for \mathbb{R}^{2}. Prove that T is an isometry on \mathbb{R}^{2}.

Problem 7 (30 points)

Suppose that A is an arbitrary 2 by 2 matrix that has trace 1 and determinant -6 .

Part (a)

Find the eigenvalues of A. [20 points]

Part (b)

Is A diagonalizable? Justify your answer. [10 points]

