Math 54 Midterm 3 (Practice 3)
 Jeffrey Kuan

August 5, 2019

Name: \qquad
SSID: \qquad

Instructions:

- This exam is $\mathbf{1 2 0}$ minutes long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- There are 7 questions.
- The exam has a total of $\mathbf{2 0 0}$ points.
- Good luck!

Problem 1 (30 points)

Consider the Bilaplacian $\Delta \Delta: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$, given by $(\Delta \Delta)(f(x))=f^{\prime \prime \prime \prime}(x)$.

Part (a)

Show that every positive number is an eigenvalue. [15 points]

Part (b)

Is $\lambda=0$ an eigenvalue of $\Delta \Delta$? If yes, find a basis for the eigenspace corresponding to $\lambda=0$. [15 points]

Problem 2 (30 points)

Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & -1 & -2 \\
-2 & -2 & -1
\end{array}\right]
$$

Find the characteristic polynomial of A, all eigenvalues (and their algebraic and geometric multiplies), and all eigenvectors. If A is diagonalizable, diagonalize A. [20 points]

Part (b)

Calculate $\left(A^{-1}\right)^{100} v$, where $v=(1,1,1)$. [10 points]

Problem 3 (30 points)

Short proofs. [15 points each]

Part (a)

Let V be an inner product space (not necessarily \mathbb{R}^{n}). Show that if v_{1}, v_{2}, and v_{3} comprise an orthogonal set in V, then

$$
\left\|v_{1}+v_{2}+v_{3}\right\|^{2}=\left\|v_{1}\right\|^{2}+\left\|v_{2}\right\|^{2}+\left\|v_{3}\right\|^{2}
$$

Part (b)

Prove that for every positive definite matrix A, there exists a positive definite matrix B such that $B^{4}=A$.

Problem 4 (30 points)

Part (a)

Find the distance from the point $(2,1,1)$ to the nullspace of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
-1 & 0 & -1 \\
2 & -2 & 2 \\
-1 & 3 & -1
\end{array}\right]
$$

[20 points]

Part (b)

Find the point in the nullspace of the matrix A (where A is the matrix in part (a)) that is closest to $(2,1,1)$.

Problem 5 (30 points)

Part (a)

Let A be a matrix with a nontrivial nullspace. Find an eigenvalue of A. [15 points]

Part (b)

Let A be a matrix such that the entries in every row sum to a fixed number k. Find an eigenvalue of A. [15 points]

Problem 6 (30 points)

Perform the Gram-Schmidt process on the vectors $\mathcal{B}=\left\{e^{x}, e^{2 x}\right\}$ in $L^{2}([0,1])$. [30 points]

Problem 7 (20 points)

Consider the matrices

$$
A=\left[\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 3
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

First, determine if A is positive definite. Then, determine if B is positive semidefinite. [20 points]

