Math 54 Midterm 3 (Practice 2)
 Jeffrey Kuan

August 5, 2019

Name: \qquad
SSID: \qquad

Instructions:

- This exam is $\mathbf{1 2 0}$ minutes long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- There are 7 questions.
- The exam has a total of $\mathbf{2 0 0}$ points.
- Good luck!

Problem 1 (30 points)

Orthogonally diagonalize the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Is A positive definite? Is A positive semidefinite? What is the maximum value of $\frac{\langle A v, v\rangle}{\langle v, v\rangle}$ for a nonzero vector v ?

Problem 2 (30 points)

Consider the following linear transformation $T: P_{2} \rightarrow P_{2}$ given by

$$
T(p(x))=\frac{d}{d x}((x+1) p(x))
$$

Part (a)

Find the determinant of T, the trace of T, all eigenvalues of T, and all eigenvectors of T. [15 points]

Part (b)

Find $T^{100}\left(x^{2}\right)$. [15 points]

Problem 3 (30 points)

Short proofs. [15 points each]

Part (a)

Let V be an inner product space. Show that if $\left\langle v, u_{1}\right\rangle=\left\langle v, u_{2}\right\rangle$ for all $v \in V$, then $u_{1}=u_{2}$.

Part (b)

Let V be an inner product space, and let W be a subspace of V. Show that W^{\perp} is a subspace of V, and that the only vector W in both W and W^{\perp} is the zero vector.

Problem 4 (30 points)

Show that if $T_{1}: V \rightarrow V$ and $T_{2}: V \rightarrow V$ are both isometries, then $T_{2} \circ T_{1}: V \rightarrow V$, defined by $\left(T_{2} \circ T_{1}\right)(v)=T_{2}\left(T_{1}(v)\right)$ is an isometry too.
[10 points]

Part (b)

Find conditions on a, b, and c (if any exist) such that

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(a x_{1}+x_{2}+x_{3},-x_{1}+b x_{2}+2 x_{3},-2 x_{1}+c x_{3}\right)
$$

is an isometry. [20 points]

Problem 5 (30 points)

Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & 2 & 1 \\
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]
$$

Part (a)
Find an orthonormal basis for $\operatorname{Col}(A)$. [25 points]

Part (b)

Find the dimension of $(\operatorname{Col}(A))^{\perp}$. [5 points]

Problem 6 (30 points)

Find all a and b such that

$$
A=\left[\begin{array}{ccc}
2 & -2 & 0 \\
-2 & 2 & 0 \\
a & b & 0
\end{array}\right]
$$

is diagonalizable.

Problem 7 (20 points)

Part (a)

Find an example of a matrix that has no real eigenvalues, or show that it does not exist. [6 points]

Part (b)

Find a matrix with all entries positive that is not positive definite, or show that it does not exist. [7 points]

Part (c)

Find a matrix that has only one distinct eigenvalue but is not diagonalizable, or show that it does not exist. [7 points]

