Math 54 Midterm 3 (Practice 1)
 Jeffrey Kuan

August 5, 2019

Name: \qquad
SSID: \qquad

Instructions:

- This exam is $\mathbf{1 2 0}$ minutes long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- There are 7 questions.
- The exam has a total of $\mathbf{2 0 0}$ points.
- Good luck!

Problem 1 (30 points)

Consider the following matrix

$$
A=\left[\begin{array}{cccccc}
2 & 1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 1 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & -1
\end{array}\right]
$$

Find the geometric and algebraic multiplicity of every eigenvalue and a basis for each eigenspace. What is the characteristic polynomial of A ? Is A diagonalizable? If so, diagonalize it.

Problem 2 (20 points)

Consider the matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
2 & -1 \\
-1 & 2 \\
-1 & -1
\end{array}\right]
$$

Find all least squares solutions to $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 2 \\ 0\end{array}\right]$. In addition, find the least squares error.

Problem 3 (30 points)

Short proofs. [15 points each]

Part (a)

Prove that if u and v are orthonormal vectors in an inner product space V (not necessarily \mathbb{R}^{n}) and a and b are real constants, then

$$
\|a u+b v\|=\sqrt{a^{2}+b^{2}}
$$

Part (b)

Show that if $v_{1}, v_{2}, \ldots, v_{n}$ form an orthonormal set in an inner product space V (not necessarily \mathbb{R}^{n}), then $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent.

Problem 4 (30 points)

Define a negative definite matrix to be a symmetric n by n matrix A such that $\langle A v, v\rangle<0$ for all nonzero vectors $v \in \mathbb{R}^{n}$.

Part (a)

Show that if A is a negative definite n by n matrix, then A has n negative eigenvalues. [15 points]

Part (b)

Determine whether the matrix

$$
A=\left[\begin{array}{ccc}
-1 & -1 & 2 \\
-1 & 0 & 0 \\
2 & 0 & -1
\end{array}\right]
$$

is negative definite. (Hint: If A is negative definite, what is true about $-A$?) [15 points]

Problem 5 (30 points)

Part (a)

Find a unit vector for the vector $f(x)=x$ in $L^{2}([0,1])$. [5 points]

Part (b)

Let W be the subspace of polynomials in P_{2} that are orthogonal to $f(x)=x$ with respect to the $L^{2}([0,1])$ inner product. Find $\operatorname{dim}(W)$ and find a basis for W. [25 points]

Problem 6 (30 points)

Let W consist of the set of points that lie on the intersection of the planes $x_{1}+x_{2}-x_{3}-2 x_{4}=0$ and $x_{1}-2 x_{3}+x_{4}=0$ in \mathbb{R}^{4}.

Part (a)

Find an orthonormal basis for W. [20 points]

Part (b)

Write $v=(20,10,-10,-20)$ as a sum of vector in W and a vector in W^{\perp}. Is such a decomposition of v as a sum of vector in W and a vector in W^{\perp} unique? [10 points]

Problem 7 (30 points)

Suppose that a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ has $T(1,1,1)=2, T(1,-1,0)=1$, and $T(0,1,-1)=-1$. You may use the fact that $\{(1,1,1),(1,-1,0),(0,1,-1)\}$ is a basis for \mathbb{R}^{3}.

Part (a)

Calculate $T(4,26,29), T(7,31,19)$, and $T(-100,-20,40)$. [20 points]

Part (b)

Find a basis for $(\operatorname{ker}(T))^{\perp}$. [10 points] (Hint: This should be quick if you did part (a) in an efficient way.)

