Math 54 Midterm 2 (Practice Exam 1)

Jeffrey Guan

July 22, 2019

Name: Answer Key SSID: \qquad

Instructions:

- This exam is 110 minutes long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- There are 7 questions.
- The exam has a total of 150 points.
- Good luck!

Problem 1 (10 points)
Let $D(\mathbb{R})$ be the set of continuous functions on \mathbb{R} that decay rapidly. In particular, we say that a function f is in $D(\mathbb{R})$ if and only if both of the following statements are true:

$$
\lim _{x \rightarrow \infty} f(x)=0 \text { and } \lim _{x \rightarrow-\infty} f(x)=0
$$

This is a vector space over \mathbb{R}.
Part (a)
Give three examples of nonzero functions in $D(\mathbb{R})$. [3 points]

$$
f(x)=\frac{1}{x^{2}+1}, \quad f(x)=\frac{2}{x^{2}+1}, f(x)=\frac{3}{x^{2}+1}
$$

Part (b)
Show that $D(\mathbb{R})$ is closed under vector addition and scalar multiplication. What is the zero vector in $D(\mathbb{R})$? [7 points]
vector addition: $(f+g)(x)=f(x)+g(x)$
If $f, g \in D(\mathbb{R}), f+g$ is continuous (since f, g are)
and $\lim _{x \rightarrow \infty}(f+g)(x)=\lim _{x \rightarrow \infty} f(x)+\lim _{x \rightarrow \infty} g(x)=0+0=0$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty}(f+g)(x)=\lim _{x \rightarrow-\infty} f(x)+\lim _{x \rightarrow-\infty} g(x)=0+0=0 \\
& \text { So } f+g \in D(\mathbb{R})
\end{aligned}
$$

scalar multiplication: $(c f)(x)=c f(x)$
If $f \in D(\mathbb{R})$, of is continuous and

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} c f(x)=c \lim _{x \rightarrow+\infty} f(x)=c \cdot 0=0 \\
& \lim _{x \rightarrow-\infty} c f(x)=c \lim _{x \rightarrow-\infty} f(x)=c-0=0
\end{aligned}
$$

so $c f \in D(\mathbb{R})$.
Zero vector is $f(x)=0$. Indeed, $f(x)=0$ is continuous and

$$
2 \quad \lim _{x \rightarrow \infty} 0=0, \lim _{x \rightarrow-\infty} 0=0
$$

Problem 2 (20 points)
For each part, determine (with proof) if the set U is a subspace of the vector space V. If yes, find the dimension of U.

Part (a)
$U=$ the set of $a+b i$ where a and b are real numbers with $a \geq b$

$$
V=\mathbb{C}
$$

not a subspace
not closed under scalar multiplication.

$$
-1(\underbrace{\frac{2+i}{q u}}_{\in U}=\underbrace{-2+(-1) i}_{\not u}
$$

Part (b)
$U=$ the set of polynomials in P_{4} that have a zero at $x=2$

$$
\begin{aligned}
& V=P_{4} \\
& \text { is a subspace If } f, g \in U, c_{1} f+c_{2} g \in U \text { too } \\
& \text { since }\left(c_{1} f+c_{2} g\right)(2)
\end{aligned}=c_{1} f(2)+c_{2} g(2) .
$$

To calculate dimension, consider $T: P_{4} \rightarrow \mathbb{R}$ defined by

$$
T(f)=f(2) \text {. Range is } \mathbb{R} \text { since }
$$

Part (c) $T: a+(x-2) \longmapsto a$. So $\operatorname{rank}(T)=1$. So nullity $(T)=4\left(\operatorname{dim}\left(P_{4}\right)=5\right)$ and $U=$ the set of polynomials in P_{4} such that $f(0)=2$ since $\operatorname{ter}(T)=U$,

$$
V=P_{4}
$$

$$
\operatorname{dim}(u)=4
$$

not a subspace

$$
f(x)=x^{2}+2 \in U \text { but } 2 f(x)=2 x^{2}+4 \notin U
$$

Problem 3 (20 points)
Determine (with proof) if the following maps are linear transformations. If so, find the kernel and range of the following linear transformations. If the linear transformation is bijective, find its inverse linear transformation.

Part (a)
The squaring map $T: C(\mathbb{R}) \rightarrow C(\mathbb{R})$ given by $T(f)=f^{2}$.
not a linear trans formation
$T(2 f) \neq 2 T(f)$ since

$$
T(2 f)=(2 f)^{2}=4 f^{2}=4 T(f) .
$$

Part (b)
The conjugation map $T: M_{3 \times 3} \rightarrow M_{3 \times 3}$ given by $T(M)=A^{-1} M A$ where A is an invertible 3 by 3 matrix.
is a linear transformation

$$
\begin{aligned}
& T\left(c_{1} M_{1}+c_{2} M_{2}\right)=A^{-1}\left(c_{1} M_{1}+c_{2} M_{2}\right) A \\
&=c_{1} A^{-1} M_{1} A+c_{2} A^{-1} M_{2} A \\
&=c_{1} T\left(M_{1}\right)+c_{2} T\left(M_{2}\right) \\
& \text { Typo should be a }
\end{aligned}
$$

Kernel: $A-1 M A=0$ <er omatrix 3 by zero matrix \downarrow

$$
\begin{aligned}
A^{-1} M A & =0 \\
A^{-1} M A A^{-1} & =A O A^{-1} \quad \operatorname{ker}(T)=\left\{\left[\begin{array}{ll}
0 \\
0 & 0
\end{array}\right]\right\} \\
M & =0
\end{aligned}
$$

$\operatorname{range}(T)=M_{3 \times 3}$ since givenany $B \in M_{3 \times 3}$,

$$
\begin{aligned}
& A^{-1} M A=B \Rightarrow A A-M A A^{-1}=A B A^{-1} \Rightarrow M=A B A^{-1} \\
& \text { so } T\left(A B A^{-1}\right)=B \text {. This shows range }(T)=M_{3 \times 3} \text {. }
\end{aligned}
$$

So Wis one-to-one, onto, and bijective.
Since $T\left(A B A^{-1}\right)=B, T^{-1}(B)=A B A^{-1}$.

Problem 4 (25 points)
Consider P_{2}, which has the following bases.

$$
\mathcal{B}_{1}=\left\{1,1+x, 1+x+x^{2}\right\} \quad \mathcal{B}_{2}=\left\{1-x, 2+x, 1-2 x+x^{2}\right\}
$$

Part (a)
Show explicitly that \mathcal{B}_{2} is a basis for P_{2}. [5 points]
(1) span: Show that

$$
\begin{aligned}
& c_{1}(1-x)+c_{2}(2+x)+c_{3}\left(1-2 x+x^{2}\right)=a+b x+c x^{2} \\
& c_{1}+2 c_{2}+c_{3}=a \\
&-c_{1}+c_{2}-2 c_{3}=b \\
& c_{3}=c
\end{aligned} \text { always has a solution forall } a, b, c .
$$

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-1 & 1 & -2 \\
0 & 0 & 1
\end{array}\right] \text { has } \operatorname{det}(A)=3 \neq 0 \text { so this is the. }
$$

(2) linear independence: Check that $c_{1}(1-x)+c_{3}(2+x)+c_{3}\left(1-2 x+x^{2}\right)=0$ Part (b) only hartrivial solution. $\sim\left\{\begin{array}{l}c_{1}+2 c_{2}+c_{3}=0 \\ -c_{1}+c_{2}-2 c_{3}=0\end{array}\right.$ $e_{3}=0$
Find the change of basis matrix from \mathcal{B}_{1} to \mathcal{B}_{2}. $[10$ points $] \quad$ Th is is the since $\operatorname{det}(\mathcal{A}) \neq 0$.

$$
[I]_{B_{1} \rightarrow B_{2}}=\left[\begin{array}{ccc}
I(1) & I(1+x) & I\left(1+x+x^{2}\right) \\
\frac{1}{3} & -\frac{1}{3} & -2 \\
\frac{1}{3} & \frac{2}{3} & 1 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& 1=((1-x)+(2+x)) \frac{1}{3} \\
& 1+x=(2+x)-1 \\
&=(2+x)-\frac{1}{3}((1-x)+(2+x)) \\
&=-\frac{1}{3}(1-x)+\frac{2}{3}(2+x) \\
& 1+x+x^{2}=\left(1-2 x+x^{2}\right)+3 x \\
&=\left(1-2 x+x^{2}\right)+3((1+x)-1) \\
&=\left(1-2 x+x^{2}\right)+3\left(-\frac{1}{3}(1-x)+\frac{2}{3}(2+x)-\frac{1}{3}(1-x)\right. \\
&\left.\quad-\frac{1}{3}(2+x)\right)
\end{aligned}
$$

Part (c)
Consider the linear transformation $T: P_{2} \rightarrow P_{2}$ given by $T(f)=f^{\prime \prime}-2 f^{\prime}+f$. Find the matrix of T with respect to \mathcal{B}_{2} and $\mathcal{B}_{1},[T]_{\mathcal{B}_{2} \rightarrow \mathcal{B}_{1}}$. [10 points $]=-2(1-x)+(2+x)+\left(1-2 x+x^{2}\right)$

$$
[T]_{B_{2} \rightarrow B_{1}}=\left[\begin{array}{ccc}
4 & -1 & 13 \\
-1 & 1 & -7 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& T(1-x)=(1-x)^{\prime \prime}-2(1-x)^{\prime}+(1-x) \\
&=0-2(-1)+(1-x)=3-x \\
&=-1(1+x)+4(1) \\
& T(2+x)=(2+x)^{\prime \prime}-2(2+x)^{\prime}+(2+x) \\
&=0-2(1)+(2+x)=x \\
&=(1+x)+(-1)(1) \\
& T\left(1-2 x+x^{2}\right)=\left(1-2 x+x^{2}\right)^{\prime \prime}-2\left(1-2 x+x^{2}\right)^{\prime} \\
&+\left(1-2 x+x^{2}\right) \\
&= 2-2(-2+2 x)+\left(1-2 x+x^{2}\right) \\
&= 7-6 x+x^{2} \\
&=\left(1+x+x^{2}\right)+(6-7 x) \\
&=\left(1+x+x^{2}\right)+(-7)(1+x)+13
\end{aligned}
$$

Problem 5 (25 points)

Let $M_{3 \times 3}$ denote the vector space of 3 by 3 matrices. Let S be the subset of 3 by 3 matrices

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

such that $g=0, d+h=0, a+e+i=0, b+f=0$, and $c=0$ (so that the sum along any diagonal going down and to the right is zero).

Show that S is a subspace of $M_{3 \times 3}$. Find $\operatorname{dim}(S)$, and find (with proof) a basis for S.

$$
\begin{aligned}
& r_{1}\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
d_{1} & e_{1} & f_{1} \\
g_{1} & h_{1} & i_{1}
\end{array}\right]+r_{2}\left[\begin{array}{lll}
a_{2} & b_{2} & c_{2} \\
d_{2} & e_{2} & f_{2} \\
g_{2} & h_{2} & i_{2}
\end{array}\right]= {\left[\begin{array}{lll}
r_{1} a_{1}+r_{2} a_{2} & r_{1} b_{1}+r_{2} b_{2} & r_{1} c_{1}+r_{2} c_{2} \\
r_{1} d_{1}+r_{2} d_{2} & r_{1} e_{1}+r_{2} e_{2} & r_{1} f_{1}+r_{2} f_{2} \\
r_{1} g_{1}+r_{2} g_{2} & r_{1} h_{1}+r_{2} h_{2} & r_{1} i_{1}+r_{2} i_{2}
\end{array}\right] } \\
& C h_{2 c k}: r_{1} g_{1}+r_{2} g_{2}=r_{1}(0)+r_{2}(0)=0 \\
&\left(r_{1} d_{1}+r_{2} d_{2}\right)+\left(r_{1} h_{1}+r_{2} h_{2}\right) \\
&=r_{1}\left(d_{1}+h_{1}\right)+r_{2}\left(d_{2}+h_{2}\right)=r_{1}(0)+r_{2}(0)=0 \\
&\left(r_{1} a_{1}+r_{2} a_{2}\right)+\left(r_{1} e_{1}+r_{2} e_{2}\right)+\left(r_{1} i_{1}+r_{2} i_{2}\right) \\
&=r_{1}\left(a_{1}+e_{1}+i_{1}\right)+r_{2}\left(a_{2}+e_{2}+i_{2}\right)=r_{1}(0)+r_{2}(0)=0 \\
&\left(r_{1} b 1+r_{2} b_{2}\right)+\left(r_{1} f_{1}+r_{2} f_{2}\right)=r_{1}\left(b,+f_{1}\right)+r_{2}\left(b_{2}^{\prime}+f_{2}\right) \\
& r_{1}(0)+r_{2}(0)=0 \\
& r_{1} c_{1}+r_{2} c_{2}=r_{1}(0)+r_{2}(0)=0 \\
& \text { is asubpace }
\end{aligned}
$$

Most general form of matrix in $S:\left[\begin{array}{ccc}a & b & 0 \\ d & e & -b \\ 0 & -d & -a-e\end{array}\right]$

$$
=a\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]+b\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]+d\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]+e\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

So take the basis $B=\left\{\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right],\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]\right\}$
Above equation shows that B pans S. So just reed tocheck linear independence.
$C_{1}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right]+C_{2}\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right]+C_{3}\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right]+C_{4}\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

$$
\begin{array}{r}
{\left[\begin{array}{ccc}
c_{1} & c_{2} & 0 \\
c_{3} & c_{4} & -c_{2} \\
0 & -c_{3}-c_{1}-c_{4}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
\quad \Rightarrow c_{1}=c_{2}=c_{3}=c_{4}=0 .
\end{array}
$$

Problem 6 (25 points)
Consider the linear transformation $T: P_{3} \rightarrow P_{3}$ given by $T(f)=f^{\prime \prime \prime}-f^{\prime}+f$. Find a basis for $\operatorname{ker}(T)$. What is the dimension of range((T) ?
$\operatorname{ker}(T):$

$$
\begin{aligned}
a+b x+c x^{2}+d x^{3} & =f(x) \\
b+2 c x+3 d x^{2} & =f^{\prime}(x) \\
2 c+6 d x & =f^{\prime \prime}(x) \\
6 d & =f^{\prime \prime \prime}(x)
\end{aligned}
$$

$$
f^{\prime \prime \prime}-f^{\prime}+f=6 d-\left(b+2 c x+3 d x^{2}\right)+\left(a+6 x+c x^{2}+d x^{3}\right)
$$

$$
=(a-b+6 d)+(b-2 c) x+(c-3 d) x^{2}+d x^{3}
$$

$$
a-b+6 d=0
$$

$$
b-2 c=0
$$

$$
c-3 d=0
$$

$$
d=0
$$

$A=\left[\begin{array}{cccc}1 & -1 & 0 & 6 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\operatorname{det} A=1$ so only the trivial solution $a=b=c=d=0$.
So $\operatorname{ker}(T)=\left\{0+0 x+0 x^{2}+0 x^{3}=p(x)\right\}$ so nullity $(T)=0$.
Thus, since $\operatorname{dim}\left(P_{3}\right)=4$, by Rank-Nullity Theorem, $\operatorname{rank}(T)=4$.

So $\operatorname{dim}(\operatorname{range}(T))=4$

Problem 7 (25 points)
Part (a)
Show that there is no onto linear transformation from P_{3} to $M_{3 \times 3}$. [10 points]
Let $T=P_{3} \rightarrow M_{3 \times 3}$ be a linear trans formation.

$$
\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{range}(T))=4_{\leftarrow \operatorname{dim}\left(P_{3}\right)} \text { (Rank-Nulity Theorem) }
$$

Since $\operatorname{dim}(\operatorname{ker}(T)) \geq 0, \operatorname{dim}($ range $(T)) \leq 4$ so $\operatorname{range}(T) \neq M_{3 \times 3}$ sircedim $\left(M_{3 \times 5}\right)=9$.
Part (b) So Tis not onto.
Suppose that the linear transformation $T: P_{3} \rightarrow M_{2 \times 2}$ is one-to-one. Is T bijective? Prove your answer. [10 points]

Yes: If T is one-to-one, $\operatorname{ker}(T)=\{0\}$ so nullity $(T)=0$. Then, nullity $(T)+\operatorname{rank}(T)=\operatorname{dim}\left(P_{3}\right) \operatorname{son}_{4} \operatorname{rank}(T)=4$. <4
So range (T) is a subs pace of $M_{2 \times 2}$ with dimension 4, so since $\operatorname{dim}\left(M_{2 \times 2}\right)=4$, we condude that $\operatorname{range}(T)=M_{2 \times 2}$.
Part (c) So Tis also onto, and hence bijective.
Find an example of a bijective linear transformation $T: P_{3} \rightarrow M_{2 \times 2}$. [5 points]

$$
T\left(a+b x+c x^{2}+d x^{3}\right)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

