Math 54 Midterm 2

Jeffrey Kuan July 22, 2019

Name:	Answer	Key			(s) ms'
			solone hem		
SSID:					

Instructions:

- This exam is 110 minutes long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- You may assume that all matrices and values are real-valued, unless they are specifically stated to be complex-valued.
- All vector spaces are over \mathbb{R} .
- There are 7 questions.
- The exam has a total of 150 points.
- Good luck!

Problem 1 (10 points)

Let V be the set of periodic sequences of real numbers with period 4, where a periodic sequence with period 4 is a sequence $a_0, a_1, a_2, a_3, a_4, a_5, ...$ of real numbers that repeats after every four terms. For example, the following (infinitely long) sequences are elements of V.

$$1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, \dots$$
 $-2, 0, 0, 1, -2, 0, 0, 1, -2, 0, 0, 1, \dots$
 $2, 0, 1, 9, 2, 0, 1, 9, 2, 0, 1, 9, \dots$

Part (a)

What are the operations of vector addition and scalar multiplication on V? Check that V is closed under vector addition and scalar multiplication. What is the zero vector in V? [6 points]

vector addition: add componentwise.

$$a_1, a_2, a_3, a_4, a_1, a_2, a_3, a_4, \dots$$
 $+ b_1, b_2, b_3, b_4, b_1, b_2, b_3, b_4$
 $a_1+b_1, a_2+b_2, a_3+b_3, a_4+b_4, a_1+b_1, a_2+b_2, a_3+b_4, \dots$

(still has period 4)

Part (b)

Part (b)

Pind, without proof, a basis for V, and dim(V). [4 points]

Problem 2 (15 points)

For each part, determine (with proof) if the set U is a subspace of the vector space V.

Part (a)

$$U = \{ \text{continuous functions } f \text{ in } C(\mathbb{R}) \text{ such that } f(0) \geq 0 \}$$

$$V = C(\mathbb{R})$$

(Recall that $C(\mathbb{R})$ is the set of continuous functions on \mathbb{R} .)

not a subspace
e.g.
$$x^2+1 \in U$$
 but $(-1)(x^2+1) \notin U$
not closed under scalar multiplication

Part (b)

$$U = \{ \text{polynomials } p(x) \text{ in } P_{10} \text{ such that } p(5) = 0 \text{ and } p'(2) = 0 \}$$

$$V = P_{10}$$
 is a subspace

If
$$f,g \in U$$
, then $c_1f + c_2g \in U$ too since $(c_1f + c_2g)(5) = c_1f(5) + c_2g(5) = c_1 \cdot 0 + c_2 \cdot 0 = 0$ $(c_1f + c_2g)'(2) = c_1f'(2) + c_2g'(2) = c_1 \cdot 0 + c_2 \cdot 0 = 0$

Part (c)

$$U = \{ \text{functions in } C^{\infty}(\mathbb{R}) \text{ such that } (f')^2 - 4f = 0 \}$$

$$V = C^{\infty}(\mathbb{R})$$

(Hint: $f(x) = x^2$ is a function such that $(f')^2 - 4f = 0$. Recall that $C^{\infty}(\mathbb{R})$ is the set of smooth functions, which are functions with infinitely many derivatives.)

not a subspace
$$f(x)=x^2 \in U \text{ since } \left((x^2)^1 \right)^2 - 4(x^2) = (2x)^2 - 4x^2 = 0$$
but $2f(x)=2x^2 \notin U \text{ since } \left((2x^2)^1 \right)^2 - 4(2x^2)$

$$= (4x)^2 - 8x^2 = 8x^2 \neq 0$$
not closed under scalar multiplication

Problem 3 (25 points)

Determine (with proof) if the following maps are linear transformations. If so, find the kernel and range of the following linear transformations and find a basis for the kernel and range (to save time, just for this question, you do not need to prove that the set you give is a basis). If the linear transformation is bijective, find its inverse linear transformation.

Part (a)

Part (a)

The map
$$F: \mathbb{R}^2 \to \mathbb{C}$$
 given by $F(a,b) = (a+2b) + (2a-b)i$.

 $F(c_1(a_1,b_1) + c_2(a_2,b_2)) = F(c_1a_1 + c_2a_2,c_1b_1 + c_2b_2)$
 $= (c_1a_1 + c_2a_2 + 2(c_1b_1 + c_2b_2)) + (2(c_1a_1 + c_2a_2) - (c_1b_1 + c_1b_2))i$
 $= c_1(a_1 + 2b_1) + c_1(2a_1 - b_1)i + c_2(a_2 + 2b_2) + c_2(2a_2 - b_2)i$
 $= c_1F(a_1,b_1) + c_2F(a_2,b_2)$ is a linear transformation $ext{der}(F): a+2b=0$
 $ext{der}(F): a+$

 $\Rightarrow \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix} \quad s \begin{bmatrix} -1 \\ -1 \end{bmatrix} \quad A \begin{bmatrix} v_1 v_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} Av_1 Av_2 \\ Av_2 \end{bmatrix}$ Basis for ker (T): { [-10] [0-1] } Basis for range (T): { [10], [10], [8 1], [8-1] } not bijective

Problem 4 (25 points)

Consider P_1 , which has the bases

$$C_1 = \{2 + x, 1 + 2x\}$$
 $C_2 = \{-1 - 2x, 3 + x\}$

Part (a)

]

1

Find the change of basis matrices from C_1 to C_2 . [8 points]

$$2+x=c_{1}(-1-2x)+c_{2}(3+x)$$

$$-c_{1}+3c_{2}=2$$

$$-2c_{1}+6c_{2}=4$$

$$-c_{1}+3c_{2}=2$$

$$-2c_{1}+c_{2}=1$$

$$-6c_{1}+3c_{2}=3$$

$$c_{1}=-\frac{1}{5}$$

$$1+2x=c_{1}(-1-2x)+c_{2}(3+x)$$

$$-c_{1}+3c_{2}=1$$

$$-2c_{1}+c_{2}=2$$

$$c_{2}=0$$

$$c_{1}=-1$$

$$\begin{bmatrix} I \end{bmatrix} c_{1}+c_{2}=\begin{bmatrix} -\frac{1}{5}-1 \end{bmatrix}$$

Part (b)

Let $\mathcal{B} = \{1, x, x^2, x^3, x^4, x^5\}$ be the standard ordered basis for P_5 . Consider the linear transformation $\Delta\Delta: P_5 \to P_1$ (called the **Bilaplacian**) given by

$$\Delta\Delta(p(x)) = \frac{d^4}{dx^4}(p(x)) = p''''(x)$$

In particular, the Bilaplacian applied to a polynomial gives the fourth derivative of that polynomial.

Find $[\Delta\Delta]_{\mathcal{B}\to\mathcal{C}_1}$ and $[\Delta\Delta]_{\mathcal{B}\to\mathcal{C}_2}$. (Don't worry if some of your numbers are large.) [17 points]

$$\Delta\Delta(1) = \Delta\Delta(x) = \Delta\Delta(x^{2}) = \Delta\Delta(x^{3}) = 0$$

$$\Delta\Delta(x^{4}) = 24 \qquad \Delta\Delta\Delta(x^{5}) = 120x$$

$$24 = 24(1) = 24(\frac{1}{3}(2(2+x) - (1+2x))) \qquad 24 = \frac{24}{5}((-1-2x) + 2(3+x))$$

$$= 8(2(2+x) - (1+2x)) \qquad = \frac{24}{5}(-1-2x) + \frac{48}{5}(3+x)$$

$$= 16(2+x) - 8(1+2x)$$

$$120x = 40((-1)(2+x) + 2(1+2x))$$

$$= (-40)(2+x) + 80(1+2x)$$

$$= -72(-1-2x) + (-2+)(3+x)$$

$$[\Delta\Delta]_{B\to C_1} = \begin{bmatrix} 0 & 0 & 0 & 0 & 16 & -40 \\ 0 & 0 & 0 & -8 & 80 \end{bmatrix} \quad [\Delta\Delta]_{B\to C_2} = \begin{bmatrix} 0 & 0 & 0 & 0 & \frac{24}{5} & -72 \\ 0 & 0 & 0 & 0 & \frac{45}{5} & -24 \end{bmatrix}$$

Problem 5 (25 points)

Let $M_{3\times3}$ denote the vector space of 3 by 3 matrices. Let S be the subspace of "very trace-free" matrices, defined to be the set of 3 by 3 matrices

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

such that a + e + i = 0, c + e + g = 0, b + e + h = 0, and d + e + f = 0 (so that the sum of the entries along each of the two main diagonals and the middle column and the middle row is zero).

Find $\dim(S)$, and find (with proof) a basis for S.

$$= a \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 &$$

The above equation shows that rectors in B span S.

So just need to check linear independence.

$$C_{1}\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + C_{2}\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + C_{3}\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + C_{4}\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + C_{5}\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Problem 6 (25 points)

Let $A = \begin{bmatrix} 2 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Consider the map $F: M_{3\times 3} \to M_{3\times 3}$ defined by F(B) = AB - BA.

Part (a)

Show that F is a linear transformation. [5 points]

$$F(c,B_1+c_2B_2) = A(c,B_1+c_2B_2) - (c,B_1+c_2B_2)A$$

$$= c_1(AB_1-B_1A) + c_2(AB_2-B_2A)$$

$$= c_1F(B_1) + c_2F(B_2)$$

Part (b)

Find a basis for ker(F). [15 points]
$$\begin{bmatrix}
2 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1, x_2 & x_3 \\
x_4 & x_5 & x_6 \\
x_7 & x_8 & x_9
\end{bmatrix}
=
\begin{bmatrix}
x_1, x_2 & x_3 \\
x_4 & x_5 & x_6 \\
x_7 & x_8 & x_9
\end{bmatrix}
=
\begin{bmatrix}
2x_1, 2x_2 & 2x_3 \\
-2x_1 + x_4 + 2x_5 + x_5 - 2x_1 + x_5
\end{bmatrix}
=
\begin{bmatrix}
2x_1 & 2x_2 & x_2 & x_2 & x_3 \\
-2x_1 - x_4 + 2x_5 & -2x_2 & -2x_3 & -2x_3 \\
-2x_1 - x_4 + 2x_5 & 0 & -2x_3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
2x_2 = 0 & x_2 = 0 & x_4 & x_5 & x_6 & x_8 & x_9 & x_9 & x_9 \\
x_2 = 0 & x_3 = 0 & x_4 & x_5 & x_6 & x_8 & x_9 & x$$

Let S be the set of 3 by 3 matrices that can be written as AB - BA for some 3 by 3 matrix B, where A is the 3 by 3 matrix defined above. The set S is a subspace of $M_{3\times3}$. Calculate $\dim(S)$. [5 points]

S=range (F).
From (b), nullity (F)=5.
rank(F)+nullity(F)=9

Check lin. ind.

$$C_1M_1 + e_2M_2 + e_3M_3 + e_4M_4 + e_5M_5 = \begin{bmatrix} 0000 \\ 0000 \end{bmatrix}$$
 $\begin{bmatrix} -\frac{1}{2}c_1 + c_2 & 0 & 0 \\ c_1 & c_2 & c_3 \end{bmatrix} = \begin{bmatrix} 0000 \\ 0000 \end{bmatrix}$
 $c_1 = c_2 = c_3 = c_4 = c_5 = 0$

so lin. ind. So Bis abasis
for ker(F)

Problem 7

Consider the linear transformation $T: P_4 \to \mathbb{R}^2$ given by $T(p(x)) = \begin{vmatrix} p(0) \\ p(1) \end{vmatrix}$.

Part (a)

Show that T is onto. [10 points]

$$T(x) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} T(1-x) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Since range (T) is a subspace of R2 containing [] and [], range (T)=R250 Tisonto.

Part (b)

Let S be the subspace of polynomials p(x) in P_4 with p(0) = 0 and p(1) = 0. Find dim(S). 5 points

(Hint: This should be quick, using the result from part (a).)

$$S = \ker(T)$$
. $\dim(S) = \operatorname{hullify}(T)$
= $\dim(P_4) - \operatorname{rank}(T)$
= $5 - 2 = 3$ $\dim(S) = 3$

Part (c)

Consider the polynomials $\mathcal{B} = \{x^2 - x, x^3 - x^2, x^4 - x^3\}$, which are all in S, where S is defined as in part (b). Determine if \mathcal{B} is a basis for S. [10 points]

(Hint: First determine if the polynomials in \mathcal{B} are linearly independent. Then, combine this

with your result in (b) to get an answer quickly.)
$$C_{1}(x^{2}-x)+C_{2}(x^{3}-x^{2})+C_{3}(x^{4}-x^{3})=0$$

$$-C_{1}x+(C_{1}-C_{2})x^{2}+(C_{2}-C_{3})x^{3}+C_{3}x^{4}=0$$

$$-C_{1}=0$$

$$C_{1}-C_{2}=0$$

$$C_{2}-C_{3}=0$$

$$C_{3}=0$$

$$C_{3}=0$$

$$C_{3}=0$$

So the polynomials in B are linearly independent

So 3 consists of three linearly independent vectors in 5, which Las dim(S) = 3, so B mustalsospanS, so BirabasirofS.

END OF EXAM