Math 1A: Midterm 2 Review Problems

Jeffrey Kuan

October 19, 2018

Skill Set 1: Derivatives

Question 1

Compute the derivative of

$$
f(x)=\cos ^{2}\left(e^{x+2}\right)
$$

Question 2

Compute the derivative of

$$
f(x)=\frac{\tan (\ln (x))}{1+\cos (\ln (x))}
$$

Question 3

Compute the derivative of

$$
f(x)=\arctan \left(\arcsin \left(2^{x+2}\right)\right)
$$

Question 4

Compute the derivative of

$$
f(x)=2^{\arccos \left(2^{\cos (x)}\right)}
$$

Question 5

Compute the second derivative of

$$
f(x)=\sec ^{2}(x)
$$

Question 6

Compute the derivative of

$$
f(x)=\arcsin \left(\sqrt{2+\sin \left(e^{x}\right)}\right)
$$

Question 7

Compute the derivative of

$$
f(x)=\sqrt[3]{\tan (4 x)+\arcsin (2 x)}
$$

Question 8

Compute the derivative of

$$
f(x)=e^{e^{x} \ln (\csc (x))}
$$

Question 9

Compute the derivative of

$$
f(x)=\log _{2}\left(\log _{3}\left(\log _{4}(x)\right)\right)
$$

Question 10

Compute the derivative of

$$
f(x)=\frac{1}{\sqrt{\operatorname{arcsec}\left(\arcsin \left(x^{5}\right)\right)}}
$$

Skill Set 2: Logarithmic Differentiation

Question 1

Compute the derivative of

$$
f(x)=x^{\sqrt{x}}
$$

Question 2

Compute the derivative of

$$
f(x)=(2 x+1)^{\sqrt{\sin ^{2}(x)}}
$$

Question 3

Compute the derivative of

$$
f(x)=(\ln (x))^{\ln (x)}
$$

Question 4

Compute the derivative of

$$
f(x)=(\arctan (x)+2)^{\arctan (x)+2}
$$

Question 5

Compute the derivative of

$$
f(x)=x^{\left(x^{2}\right)} \cdot(2+\cos (x))^{\sin (x)}
$$

Skill Set 3: Implicit Differentiation

Question 1

Find an expression for $\frac{d y}{d x}$ for the following curve.

$$
\sec \left(\sqrt{x y^{2}}\right)=\sin ^{2}(x)+\cos ^{2}(y)
$$

Question 2

Find the equation of the tangent line and normal line to the following curve at $(1,1)$.

$$
\ln (\sqrt{x y})=x^{2} y^{3}-e^{x-1} \sqrt{y}
$$

Question 3

Find an expression for $\frac{d y}{d x}$ for the following curve.

$$
\arctan \left(e^{\sqrt{x y}}\right)=x^{2} e^{y}+y^{3}
$$

Question 4

Find the equation of the tangent line and normal line to the following curve at $(1,1)$.

$$
\sin \left(x^{3} y^{3}-1\right)=e^{\left(e^{y-1}-1\right)}-(x y)^{4 / 3}
$$

Question 5

Find the equation of all tangent lines to the ellipse

$$
x^{2}+3 y^{2}=12
$$

that pass through the point $(0,4)$. (Careful, this is not asking for the tangent line to $(0,4)$, because as you can check, the point $(0,4)$ is not actually on the ellipse.)

Skill Set 4: Curve Sketching

Question 1

Sketch the graph of the curve

$$
f(x)=\frac{x^{3}}{x^{3}+x}
$$

and label all zeros, asymptotes, local maxima, local minima, and points of inflection.

Question 2

Sketch the graph of the curve

$$
f(x)=\arctan \left(e^{x}\right)
$$

and label all zeros, local maxima, local minima, and points of inflection.

Question 3

Sketch the graph of the curve

$$
f(x)=x^{1 / 4}-4 x^{-3 / 4}
$$

and label all zeros, local maxima, local minima, and points of inflection.

Question 4

Sketch the graph of the curve

$$
f(x)=\sqrt{x} \cdot \ln (x)
$$

and label all zeros, local maxima, local minima, and points of inflection.

Question 5

Sketch the graph of the curve

$$
f(x)=\frac{x^{4}}{x^{3}+x}
$$

and label all zeros, asymptotes, local maxima, local minima, and points of inflection.

Skill Set 5: Optimization

Question 1

Consider the circle $x^{2}+y^{2}=1$. What is the maximum area of a triangle with vertices at $(1,0),(x, y)$, and $(-x, y)$, where (x, y) is on the circle? (Caution! Note that we are not assuming that y is nonnegative.)

Question 2

A triangle has two sides of length 1 . What is the maximum area of the triangle?

Question 3

What is the smallest distance between a point on the graph of $y=\frac{2}{\sqrt{x-1}}$ and the point $(1,0) ?$

Question 4

What is the largest area of a rectangle inscribed in the ellipse $9 x^{2}+16 y^{2}=1$, where the rectangle is centered at the origin?

Question 5

Find the shortest distance from the curve $x^{4}-3 y^{2}=-2$ to the origin.

Question 6

Find the shortest distance from the point $(1,2)$ to the circle $x^{2}+y^{2}=20$.

Skill Set 6: Mean Value Theorem, Intermediate Value Theorem, Rolle's Theorem

Question 1

Show that the equation $\sin (4 x)=-6 x+1$ has exactly one solution.

Question 2

Show that the function $\cos (x)+\arctan (x)+2 x-1$ has exactly one zero.

Question 3

Show that the equation $\cos ^{2}(x)+x=e^{-x}$ has exactly one solution.

Question 4

Show that the equation $x^{5}=\frac{10}{3} x^{3}-5 x+3$ has exactly one solution.

Question 5

Show that the equation $x^{4}+2 x^{2}=10$ has exactly two solutions.

Skill Set 7: L'Hopital's Rule

Question 1

Compute the following limit.

$$
\lim _{x \rightarrow 2} \frac{x^{3}-3 x-2}{x^{2}-3 x+2}
$$

Question 2

Compute the following limit.

$$
\lim _{x \rightarrow 0^{+}}\left(x^{3}+1\right)^{1 / x}
$$

Question 3

Compute the following limit.

$$
\lim _{x \rightarrow \infty} x^{2} \ln (x)
$$

Question 4

Compute the following limit.

$$
\lim _{x \rightarrow \infty} \frac{\arctan (x) \ln (x)}{x^{2}}
$$

Question 5

Compute the following limit.

$$
\lim _{x \rightarrow \infty}\left(1+\frac{3}{x^{2}}\right)^{\sqrt{x}}
$$

Question 6

Compute the following limit.

$$
\lim _{x \rightarrow 0^{+}}(\sqrt{x})^{x^{2}}
$$

Question 7

Compute the following limit.

$$
\lim _{x \rightarrow \infty}\left(1+e^{-x}\right)^{e^{x}}
$$

