Math 54 Midterm 1 (Practice Exam 4)
 Jeffrey Kuan

July 8, 2019

Name: \qquad
SSID: \qquad

Instructions:

- This exam is $\mathbf{1 1 0}$ minutes long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- There are 5 questions.
- Question 1 is 40 points, Question 2 is 50 points, and Questions 3, 4, and 5 are 20 points each, for a total of $\mathbf{1 5 0}$ points.
- Good luck!

Problem 1

Give an example of each of the following, or briefly explain why the object described cannot exist. [5 pts each]

Part (a)

Three 3×3 matrices that solve $A^{2}=I$.

Part (b)

Three 2×2 matrices with all positive entries and determinant 1 .

Part (c)

A vector \mathbf{v} in \mathbb{R}^{3} such that $(1,2,1),(-2,-4,-2)$, and \mathbf{v} are linearly independent in \mathbb{R}^{3}.

Part (d)

A coefficient matrix A such that $A \mathbf{x}=0$ does not have a unique solution, and for some \mathbf{b}, the system $A \mathbf{x}=\mathbf{b}$ is inconsistent.

Part (e)

Two matrices A and B such that $\operatorname{tr}(A B) \neq \operatorname{tr}(A) \operatorname{tr}(B)$.

Part (f)

A 2×2 matrix A such that $\operatorname{det}\left(A^{-1}\right)=\frac{1}{4}$.

Part (g)

An invertible 3 by 3 matrix with all entries positive.

Part (h)

A 3×3 invertible matrix where the second row is four times the first row.

Problem 2

Short answer. [10 points each]

Part (a)

Consider the matrices

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Calculate A^{-1}, and calculate $\left(A^{-1} B A\right)^{101}$.

Part (b)

If A is a square matrix such that $A \mathbf{x}=\mathbf{b}$ has a unique solution for every \mathbf{b}, what is the reduced row echelon form of A ? Is A invertible?

Part (c)

Find all λ such that the following matrix is invertible.

$$
\left[\begin{array}{ccc}
0 & 6 / 5 & 1 \\
\lambda & \lambda & 1 \\
5 & \lambda & 0
\end{array}\right]
$$

Part (d)

Find values of c and d such that the following system has (a) no solution, (b) exactly one solution, and (c) infinitely many solutions.

$$
\begin{gathered}
x_{1}+x_{2}=c \\
3 x_{1}+d x_{2}=2 d
\end{gathered}
$$

Part (e)

Let us consider the following matrices.

$$
A=\left[\begin{array}{ccccc}
12 & 11 & 10 & 9 & 8 \\
7 & 6 & 5 & 4 & 3 \\
2 & 1 & 0 & -1 & -2 \\
-3 & -4 & -5 & -6 & -7 \\
-8 & -9 & -10 & -11 & -12
\end{array}\right] \quad B=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Find $\operatorname{det}\left(A^{2019} B^{2019}\right)$.

Problem 3

Part (a)

Consider the following elementary matrix

$$
A=\left[\begin{array}{llll}
1 & 3 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Calculate $A B$, where $B=\left[\begin{array}{cccc}1 & 0 & 2 & 1 \\ -1 & 2 & 0 & 1 \\ 0 & -1 & -1 & 3 \\ 4 & 2 & 1 & 1\end{array}\right]$. [8 points $]$

Part (b)

Multiplying a matrix B on the left by the elementary matrix A has the same effect as performing a certain elementary row operation on B. Which elementary row operation is it? [4 points]

Part (c)

What is A^{-1} ? [8 points]

Problem 4

Find conditions on a, b, c, and d such that the vectors

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
-1 \\
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}
a \\
b \\
c \\
d
\end{array}\right]
$$

are linearly independent in \mathbb{R}^{4}. [20 points]

Problem 5

Find all $x_{1}, x_{2}, x_{3}, x_{4}$ such that

$$
\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 0 & -1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]
$$

If you solve this using a system of linear equations, solve the system of equations using row reduction. [20 points]

