Math 54 Midterm 1 (Practice Exam 3)
 Jeffrey Kuan

July 8, 2019

Name: \qquad
SSID: \qquad

Instructions:

- This exam is $\mathbf{1 1 0}$ minutes long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- There are 5 questions.
- Question 1 is 40 points, Question 2 is 50 points, and Questions 3, 4, and 5 are 20 points each, for a total of $\mathbf{1 5 0}$ points.
- Good luck!

Problem 1

Give an example of each of the following, or briefly explain why the object described cannot exist. [5 pts each]

Part (a)

A 3 by 3 matrix with all entries nonzero whose reduced row echelon form is the identity matrix.

Part (b)

A nonzero matrix A such that $\operatorname{det}\left(A^{4}\right)=0$.

Part (c)

Six distinct nonzero vectors in \mathbb{R}^{3} whose span is not all of \mathbb{R}^{3}.

Part (d)

A nonzero 3×3 matrix A that is its own inverse, that is not the identity matrix.

Part (e)

A number c for which the following system is inconsistent.

$$
\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & c
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
c
\end{array}\right]
$$

Part (f)

A matrix A such that A is invertible, but A^{2} is not invertible.

Part (g)

Two nonzero matrices that commute with each other, none of which are diagonal. (Hint: Consider powers.)

Part (h)

Two 3×3 invertible matrices A and B such that $A+B$ is not invertible.

Problem 2

Short answer. [10 points each]

Part (a)

Define

$$
A^{-1}=\left[\begin{array}{cccc}
2 & 1 & -1 & 0 \\
0 & 1 & 1 & 1 \\
-1 & 2 & 1 & 0 \\
0 & 2 & 1 & 3
\end{array}\right] \quad B=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Find the trace of $A^{2} B\left(A^{-1}\right)^{2}$.

Part (b)
Calculate A^{3} and A^{100}, where

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Part (c)

Calculate the determinant of

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & -1 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

Part (d)

Find all values λ for which the following matrix is invertible, where I is the 4×4 identity matrix.

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-10 & 2 & 0 & 0 \\
-10 & -7 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]-\lambda I
$$

Part (e)

Write the solution of the system of equations

$$
\begin{gathered}
3 x_{1}+x_{2}-x_{3}=0 \\
x_{1}+x_{2}+x_{3}=0 \\
x_{1}-x_{3}=0
\end{gathered}
$$

in parametric vector form.

Problem 3

Part (a)

Calculate the inverse of the following matrix. [10 points]

$$
A=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
2 & 0 & 1 & 1 \\
0 & 1 & 0 & -1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Part (b)

Use A^{-1} and matrix multiplication to find the general solution $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ to the linear system

$$
\begin{gathered}
x_{1}+x_{3}=b_{1} \\
2 x_{1}+x_{3}+x_{4}=b_{2} \\
x_{2}-x_{4}=b_{3} \\
x_{2}+x_{4}=b_{4}
\end{gathered}
$$

in terms of b_{1}, b_{2}, b_{3}, and b_{4}. [10 points]

Problem 4

Part (a)

Show that the columns of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 3 & 1 \\
1 & 2 & 1
\end{array}\right]
$$

are linearly independent and have span equal to all of \mathbb{R}^{3} without using the determinant. [10 points]

Part (b)

Show that for a square 3×3 matrix, if the columns are linearly independent in \mathbb{R}^{3}, then their span is all of \mathbb{R}^{3}. Your explanation should be relatively brief. (Hint: Use an equivalence theorem, and the fact that the matrix is square.) [10 points]

Problem 5

Find a quadratic polynomial $f(x)=a x^{2}+b x+c$ such that $f(-1)=1, f(1)=1$, and $f(2)=0$ by converting this problem to a system of linear equations. Is such a quadratic polynomial unique? [20 points]

