Math 54 Midterm 1 (Practice Exam 2)
 Jeffrey Kuan

July 8, 2019

Name: \qquad
SSID: \qquad

Instructions:

- This exam is $\mathbf{1 1 0}$ minutes long.
- No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
- All answers must be justified. Unjustified answers will be given little or no credit.
- You may write on the back of pages or on the blank page at the end of the exam. No extra pages can be attached.
- There are 5 questions.
- Question 1 is 40 points, Question 2 is 50 points, and Questions 3, 4, and 5 are 20 points each, for a total of $\mathbf{1 5 0}$ points.
- Good luck!

Problem 1

Give an example of each of the following, or briefly explain why the object described cannot exist. [5 pts each]

Part (a)

Two row equivalent matrices A and B such that $A \mathbf{x}=0$ and $B \mathbf{x}=0$ have different solution sets.

Part (b)

A nonzero 4×4 matrix A such that $A=A^{-1}$.

Part (c)

A set of vectors that span \mathbb{R}^{2} but are not linearly independent.

Part (d)

A symmetric 4 by 4 matrix with determinant -20 .

Part (e)

A system of equations $A \mathbf{x}=\mathbf{b}$ in three variables x_{1}, x_{2}, x_{3} with \mathbf{b} nonzero, whose solution set is a line through the origin.

Part (f)

A matrix that commutes with every matrix that is not the zero matrix or the identity matrix.

Part (g)

A square matrix whose columns are linearly independent, but whose rows are not linearly independent.

Part (h)

A nonzero 3 by 3 matrix with trace zero and determinant zero.

Problem 2

Short answer. [10 points each]

Part (a)

Calculate the determinant of the following matrix.
$\left[\begin{array}{llllll}1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 2 & 0 & 0 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 & 0 & 2\end{array}\right]$

Part (b)

Classify all values x, y, and z so that $A \mathbf{x}=\mathbf{b}$ is consistent for every vector \mathbf{b}.

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 3 & z & -2 \\
0 & 0 & 0 & y & 1 \\
0 & 0 & 0 & x & 0
\end{array}\right]
$$

Part (c)

Let A be the invertible matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, and let D be the diagonal matrix $D=\left[\begin{array}{ll}9 & 0 \\ 0 & 4\end{array}\right]$.
Find a matrix M such that $M^{2}=A^{-1} D A$. Express your answer as a single 2 by 2 matrix.

Part (d)

Suppose that for some coefficient matrix $A, A \mathbf{x}=0$ has a unique solution. Does $A \mathbf{x}=\mathbf{b}$ necessarily have a unique solution for every \mathbf{b} ?

Part (e)

Define

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & 2 & 3 & 4 & 5 \\
0 & 0 & 3 & 4 & 5 \\
0 & 0 & 0 & 4 & 5 \\
0 & 0 & 0 & 0 & 5
\end{array}\right] \quad B=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 \\
4 & 3 & 2 & 1 & 0 \\
5 & 4 & 3 & 2 & 1
\end{array}\right]
$$

Find $\operatorname{det}\left(B^{4} A\right)$.

Problem 3

Show that the columns of the following matrix are linearly independent and span \mathbb{R}^{6}.

$$
M=\left[\begin{array}{llllll}
3 & 2 & 4 & 0 & 4 & 0 \\
2 & 1 & 2 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 & 3 & 0 \\
7 & 3 & 4 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 2 & 3 & 4 & 1 & 1
\end{array}\right]
$$

[20 points]

Problem 4

Find all x_{1}, x_{2}, x_{3}, and x_{4} that solve the following matrix equation.

$$
\left[\begin{array}{cc}
1 & 2 \\
3 & -1
\end{array}\right]\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right]=\left[\begin{array}{cc}
3 & -1 \\
0 & 0
\end{array}\right]
$$

If you use a system of equations to solve this, solve the system of equations by row reducing to reduced row-echelon form. [20 points]

Problem 5

Part (a)

Calculate the inverse of the following upper triangular matrix. [10 points]

$$
M=\left[\begin{array}{cccc}
1 & 2 & 2 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Part (b)

Show, without using the determinant, that every upper triangular matrix with nonzero diagonal entries is invertible. [10 points]

