Math 54 Midterm 1

Instructor: Jeffrey Kuan

July 8, 2019

Name: A NS Wes Kﬁi}l

SSID: )

Instructions:

e This exam is 110 minutes long.
e No calculators, computers, cell phones, textbooks, notes, or cheat sheets are allowed.
o All answers must be justified. Unjustified answers will be given little or no credit.

e You may write on the back of pages or on the blank page at the end of the exam. No
extra pages can be attached.

e There are 5 questions.

e Question 1 is 40 points, Question 2 is 50 points, and Questions 3, 4, and 5 are 20 points
each, for a total of 150 points.

e Good luck!



Problem 1

Give an example of each of the following, or briefly explain why the object described cannot
exist. [5 pts each]

Part (a)
A 5 by 5 matrix with determinant equal to 8 that is not a diagonal matrix.
12 347
O 2 2 3 ¢
O O | 3 4«
o O o0 |4
o oo ol |
Part (b)

A 3 by 3 non-diagonal matrix A such that for every vector b in R3, the system Ax = b has
a unique solution.
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Part (c)

Two invertible matrices A and B of the same size such that ABARB is not invertible.
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Part (d)
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A matrix A (with real entries) such that A*>= [3 1 0. (Hint: Think about what det{A)
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Part (e)

Five vectors whose span is all of R2.

(1,0),(o,n, (1), (2, 2),(3,3)

Part (f)

A homogeneous linear system of equations in four variables whose only solution is the single
point (z1, z2, z3,24) = (2,0,1,9).
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Part (g)

A 6 by 6 matrix with determinant 1 and trace 6.
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Part (h)

A 3 by 2 matrix whose columns are linearly independent in R® but whose rows are not
linearly independent in R2.
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Problem 2

Short answer. [10 points each]

Part (a) [

Define the matrices D l
A 1 =2 8 -27 0
0 1 10 8

Find a matrix M such that M3 = ADA™'. Write your answer as a single 2 X 2 matriz.
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Let A, C, and L be invertible 2 x 2 matrices such that
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Part (c)

Suppose that for some b, the system Ax = b is inconsistent. Is this enough information
to deduce whether Ax = 0 has a unique solution or infinitely many solutions? If yes, state
whether Ax = 0 has a unique solution or infinitely many solutions. If no, explain why.
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Part (e)

Find all real numbers ¢ (if any exist) such that Ax = 0 has a unique solution, where

1 0 ¢ O ) O R,-cR?
A= [2 0 —1 0} — [é_ g Ra+4Kkz
- o S "

’ — [OD ]@3-2@.
0 0

O
_%]:!OO ]I
o OO O

a.lwa,g: has a.eru vaviable.

\WO c 3{15-"
5




Problem 3

Find all 1, x5, 23, and x4 such that
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If you solve this using systems of equations, solve the system using row reduction.

(Interesting observation: This calculates all matrices that commute with the matrix {_21 (1)] )

[20 points]
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Problem 4

Consider the vectors

Part (a)

Find conditions on a, b, and ¢ such that vy is in the span of the vectors vi,va, vg, V4.
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Part (b)

Find conditions on a, b, and ¢ such that the vectors vq,va, vs, v4, and v are linearly
independent in R?. (Hint: This should be quick.) [5 points]
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Problem 5

Part (a)

Calculate the inverse of the matrix. [8 points]
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e Find a quadratic polynomial f(x) = asitbaete such that f(—1) = 1, f(1) = -1,

f(3) = 2, by using a linear system of eq%afi(%ﬁ?f?fl’fd then using A~! above and matrix
multiplication to solve the resulting linear system.

(Note: To get full credit, you must solve the system using A=*. You will NOT get full
credit if you solve the system using row reduction.) [8 points]

e Issuch a quadratic polynomial f(z) satisfying f(—1) =1, f(1) = -1, f(2) = 2 unique?
Explain briefly in two sentences or less. (Hint: Invertible Matrix Theorem) [4 points]
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