Math 54 Quiz 6 Solutions

October 17, 2019

Question 1 (True/False)

- True. If $A v=\lambda_{1} v$ and $B v=\lambda_{2} v$, then $(A+B) v=A v+B v=\left(\lambda_{1}+\lambda_{2}\right) v$ so v is an eigenvector of $A+B$ with eigenvalue $\lambda_{1}+\lambda_{2}$.
- False. $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is not diagonalizable over the reals or complex numbers.
- False. Again, consider $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
- False. $2 v$ is still an eigenvector of A with the same eigenvalue λ, since $A(2 v)=2(A v)=$ $2(\lambda v)=\lambda(2 v)$.
- True. The characteristic polynomial is a real polynomial with degree 2019. So any nonreal eigenvalues come in conjugate pairs. Thus, at worst, we can have 2018 complex eigenvalues, so one of the eigenvalues must be real.
- True. $1-2 i$ and $-1+3 i$ are also eigenvalues. There is only one eigenvalue remaining and it must be real since any non-real eigenvalues for a real-valued matrix come in conjugate pairs.
- True. Suppose A is a diagonalizable real-valued matrix whose only eigenvalue is 1 . Then, $A=S D S^{-1}$ where $D=I$ since it has 1 all along the diagonal. Thus, $A=$ $S I S^{-1}=S S^{-1}=I$.
- True. If A is not invertible, then $A v=0$ for some nonzero vector v, or equivalently $A v=0 v$. So $\lambda=0$ is an eigenvalue of A.
- False. Consider $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$.
- True. If A is an invertible diagonalizable matrix, then $A=S D S^{-1}$ where D has nonzero diagonal entries (since 0 is not an eigenvalue of A by the invertibility of A). Thus, $A^{-1}=\left(S D S^{-1}\right)^{-1}=S^{-1} D^{-1} S=\left(S^{-1}\right) D^{-1}\left(S^{-1}\right)^{-1}$ where D^{-1} is a diagonal matrix whose entries are the reciprocals of the entries of D.

Question 2

Consider the matrix

$$
A=\left[\begin{array}{ccc}
0 & 0 & 1 \\
2 & 2 & 1 \\
0 & 0 & -2
\end{array}\right]
$$

The characteristic polynomial is

$$
\operatorname{char}_{A}(x)=\left|\begin{array}{ccc}
-x & 0 & 1 \\
2 & 2-x & 1 \\
0 & 0 & -2-x
\end{array}\right|=-x(-2-x)(2-x)
$$

So the eigenvalues are as follows:

- $\lambda=0$ with algebraic multiplicity 1 .

$$
U_{0}=\operatorname{nullspace}(A-0 I)=\left\{x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right\}
$$

so a basis for the eigenspace consists of the single vector $(-1,1,0)$. So the geometric multiplicity of $\lambda=0$ is 1 .

- $\lambda=-2$ with algebraic multiplicity 1 .

$$
U_{-2}=\operatorname{nullspace}(A+2 I)=\text { nullspace }\left[\begin{array}{lll}
2 & 0 & 1 \\
2 & 4 & 1 \\
0 & 0 & 0
\end{array}\right]=\left\{x_{3}\left[\begin{array}{c}
-1 / 2 \\
0 \\
1
\end{array}\right]\right\}
$$

so a basis for the eigenspace consists of the single vector $(-1 / 2,0,1)$. So the geometric multiplicity of $\lambda=-2$ is 1 .

- $\lambda=2$ with algebraic multiplicity 1 .

$$
U_{2}=\text { nullspace }(A-2 I)=\text { nullspace }\left[\begin{array}{ccc}
-2 & 0 & 1 \\
2 & 0 & 1 \\
0 & 0 & -4
\end{array}\right]=\left\{x_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

so a basis for the eigenspace consists of the single vector $(0,1,0)$. So the geometric multiplicity of $\lambda=2$ is 1 .
Note that A is diagonalizable over the real numbers (and also over the complex numbers).
So we can write $A=S D S^{-1}$ where $S=\left[\begin{array}{ccc}-1 & -1 / 2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ and $D=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2\end{array}\right]$. Thus,

$$
\lambda^{n} A^{n}=S\left(\lambda^{n} D^{n}\right) S^{-1}=S\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & (-2 \lambda)^{n} & 0 \\
0 & 0 & (2 \lambda)^{n}
\end{array}\right] S^{-1}
$$

So $\lim _{n \rightarrow \infty} \lambda^{n} A^{n}$ exists when $\lim _{n \rightarrow \infty}(-2 \lambda)^{n}$ and $\lim _{n \rightarrow \infty}(2 \lambda)^{n}$ both exist. These limits exist when $-1 / 2 \leq \lambda<1 / 2$ and when $-1 / 2<\lambda \leq 1 / 2$ respectively.

So $\lim _{n \rightarrow \infty} \lambda^{n} A^{n}$ exists when $-1 / 2<\lambda<1 / 2$.

Question 3

Consider

$$
B=\left[\begin{array}{cc}
0 & -1 \\
4 & k
\end{array}\right]
$$

We compute

$$
\operatorname{char}_{B}(x)=\left|\begin{array}{cc}
-x & -1 \\
4 & k-x
\end{array}\right|=x^{2}-k x+4
$$

Use the discriminant ($D=b^{2}-4 a c$) to analyze the characteristic polynomial.

- When $k^{2}-16>0$ (when $k>4$ or $k<-4$), the characteristic polynomial has two real roots. So B has two distinct real eigenvalues and is diagonalizable over the real numbers (and also over the complex numbers).
- When $k^{2}-16=0$ (when $k=4$ or $k=-4$), the characteristic polynomial has repeated real roots. So we need to calculate the eigenspaces to determine if this matrix is diagonalizable.
- If $k=4$, we have $B=\left[\begin{array}{cc}0 & -1 \\ 4 & 4\end{array}\right] . \lambda=2$ has algebraic multiplicity 2 but since

$$
U_{2}=\text { nullspace }\left[\begin{array}{cc}
-2 & -1 \\
4 & 2
\end{array}\right]=\left\{x_{2}\left[\begin{array}{c}
-1 / 2 \\
1
\end{array}\right]\right\}
$$

the geometric multiplicity is only equal to 1 . So the matrix is not diagonalizable in this case over either the real or complex numbers.

- If $k=-4$, we have $B=\left[\begin{array}{ll}0 & -1 \\ 4 & -4\end{array}\right] . \lambda=-2$ has algebraic multiplicity 2 but since

$$
U_{-2}=\text { nullspace }\left[\begin{array}{ll}
2 & -1 \\
4 & -2
\end{array}\right]=\left\{x_{2}\left[\begin{array}{c}
1 / 2 \\
1
\end{array}\right]\right\}
$$

the geometric multiplicity is only equal to 1 . So the matrix is not diagonalizable in this case over either the real or complex numbers.

- When $k^{2}-16<0$ (when $-4<k<4$), the characteristic polynomial has distinct complex roots. So in this case, B is not diagonalizable over the real numbers, but B is diagonalizable over the complex numbers.

So B is diagonalizable over the real numbers when $k>4$ or $k<-4$, and B is diagonalizable over the complex numbers when $k \neq-4,4$.

