Math 54 Quiz 5

September 26, 2019

Part 1: True/False (15 points)

Directions: For each item, circle either True or False. (1 point each)

- (True/False) \mathbf{v}_1 and \mathbf{v}_2 are linearly independent if neither is a scalar multiple of the other.
- (True/False) $1, x, x^2, x^3$ is a basis for P_3 .
- (True/False) The span of $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ in $M_{2\times 2}$ is all 2 by 2 matrices whose second row is all zero.
- (True/False) The vector (2,0,1,9) is in the left nullspace of the matrix $A = \begin{bmatrix} 1 & 4 & 0 \\ 9 & 12 & -3 \\ -2 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix}$.
- (True/False) The row space of $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \end{bmatrix}$ is a subspace of \mathbb{R}^2 .
- (True/False) The column space of an invertible square n by n matrix must be \mathbb{R}^n .
- (True/False) The kernel of a linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$ is the set of all $\mathbf{x} \in \mathbb{R}^m$ such that $T(\mathbf{x}) = \mathbf{0}$.
- (True/False) There is a basis of P_9 that has 10 vectors in it.
- (True/False) The set of noninvertible 2 by 2 matrices is a subspace of $M_{2\times 2}$.
- (True/False) The null space of an m by n matrix A is a subspace of \mathbb{R}^n .
- (True/False) The vectors (-1,0,0,0), (0,0,0,2), (0,3,0,0), (0,0,-4,0) form a basis for \mathbb{R}^4 .
- (True/False) The set of polynomials in P_2 such that p'''(-2) = -1 is a subspace of P_2 .
- (True/False) If the row reduced echelon form of the m by n matrix A has no free column, then $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^m .
- (True/False) The set of 3 by 3 matrices whose diagonal entries sum to zero is a subspace of $M_{3\times3}$.
- (True/False) The dimension of $M_{4\times4}$ is 8.

Part 2: Short Answer (15 points)

Directions: Provide a short answer for each question (no work needed). The questions here should not be computationally difficult. (In particular, no involved calculations are needed.)

Short Answer 1 (6 points)

Let
$$A = \begin{bmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
. (1.5 points each)

- Find a basis for the column space of A.
- Find a basis for the nullspace of A.
- Find a basis for the row space of A.
- Find a basis for the left nullspace of A.

Short Answer 2 (4.5 points)

Consider the vector space $M_{3\times3}$, the space of all 3 by 3 real valued matrices. (1.5 points)

- Give an example of one invertible matrix in $M_{3\times 3}$, and one noninvertible matrix in $M_{3\times 3}$.
- Find a basis for $M_{3\times3}$ and determine the dimension of $M_{3\times3}$.
- The set of diagonal 3 by 3 matrices is a subspace of $M_{3\times3}$. Find a basis for the subspace of diagonal 3 by 3 matrices, and determine the dimension of this subspace.

Short Answer 3 (4.5 points)

Consider P_3 , the space of polynomials with real coefficients of degree less than or equal to 3. (1.5 points each)

- Do the polynomials $1, x, x^2, 1 + x + x^2$ form a basis for P_3 ? Briefly justify your answer.
- Find six polynomials that span P_3 .
- Find three linearly independent polynomials in P_3 .