Math 54 Quiz 5

September 26, 2019

Part 1: True/False (15 points)

Directions: For each item, circle either True or False. (1 point each)

- (True/False) \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent if neither is a scalar multiple of the other.
- (True/False) $1, x, x^{2}, x^{3}$ is a basis for P_{3}.
- (True/False) The span of $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ in $M_{2 \times 2}$ is all 2 by 2 matrices whose second row is all zero.
- (True/False) The vector $(2,0,1,9)$ is in the left nullspace of the matrix $A=\left[\begin{array}{ccc}1 & 4 & 0 \\ 9 & 12 & -3 \\ -2 & 1 & 0 \\ 0 & -1 & 0\end{array}\right]$.
- (True/False) The row space of $A=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0\end{array}\right]$ is a subspace of \mathbb{R}^{2}.
- (True/False) The column space of an invertible square n by n matrix must be \mathbb{R}^{n}.
- (True/False) The kernel of a linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is the set of all $\mathbf{x} \in \mathbb{R}^{m}$ such that $T(\mathbf{x})=\mathbf{0}$.
- (True/False) There is a basis of P_{9} that has 10 vectors in it.
- (True/False) The set of noninvertible 2 by 2 matrices is a subspace of $M_{2 \times 2}$.
- (True/False) The nullspace of an m by n matrix A is a subspace of \mathbb{R}^{n}.
- (True/False) The vectors $(-1,0,0,0),(0,0,0,2),(0,3,0,0),(0,0,-4,0)$ form a basis for \mathbb{R}^{4}.
- (True/False) The set of polynomials in P_{2} such that $p^{\prime \prime \prime}(-2)=-1$ is a subspace of P_{2}.
- (True/False) If the row reduced echelon form of the m by n matrix A has no free column, then $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{m}.
- (True/False) The set of 3 by 3 matrices whose diagonal entries sum to zero is a subspace of $M_{3 \times 3}$.
- (True/False) The dimension of $M_{4 \times 4}$ is 8 .

Part 2: Short Answer (15 points)

Directions: Provide a short answer for each question (no work needed). The questions here should not be computationally difficult. (In particular, no involved calculations are needed.)

Short Answer 1 (6 points)
Let $A=\left[\begin{array}{ccccc}1 & 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right] \cdot$ (1.5 points each $)$

- Find a basis for the column space of A.
- Find a basis for the nullspace of A.
- Find a basis for the row space of A.
- Find a basis for the left nullspace of A.

Short Answer 2 (4.5 points)

Consider the vector space $M_{3 \times 3}$, the space of all 3 by 3 real valued matrices. (1.5 points)

- Give an example of one invertible matrix in $M_{3 \times 3}$, and one noninvertible matrix in $M_{3 \times 3}$.
- Find a basis for $M_{3 \times 3}$ and determine the dimension of $M_{3 \times 3}$.
- The set of diagonal 3 by 3 matrices is a subspace of $M_{3 \times 3}$. Find a basis for the subspace of diagonal 3 by 3 matrices, and determine the dimension of this subspace.

Short Answer 3 (4.5 points)

Consider P_{3}, the space of polynomials with real coefficients of degree less than or equal to 3 . (1.5 points each)

- Do the polynomials $1, x, x^{2}, 1+x+x^{2}$ form a basis for P_{3} ? Briefly justify your answer.
- Find six polynomials that span P_{3}.
- Find three linearly independent polynomials in P_{3}.

